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ABSTRACT

The acoustic phenomena in the actual sound systems involve a variety of compound prob-
lems. In this paper, the well-known Bayes’ theorem is first employed and expanded into
orthonormal and non-orthonomal series forms matched to the digital processing of lower
and higher order statistical informations and the noisy observations. Proposed on-line al-
gorithms of digital filter type are applied to the actual state estimation for a reverberation
characteristics in a room under contamination of background noises.

1. INTRODUCTION

The acoustic phenomena in the actual sound environmental systems involve a variety
of compound problems. Not only the physical, social but also human factors make
them further complicated and diversified. Thus, the frequency and amplitude ranges
of fluctuation of the environmental sound spread widely and so its fluctuation can
exhibit every variety in pattern, which shows very often non-stationary and non-
(Gaussian properties.

On the basis of the above viewpoint, this paper discusses a new proposal of a general
type of stochastic signal processing procedure which can evaluate an arbitrary type
of statistics including not only the lower order moments like mean and variance
supported by a large amount of sampled data, but also the higher order moments
supported by a small amount of sampled data reflecting the end of the probability
distribution form. More concretely, the well-known Bayes’ theorem is first expanded
into the orthonomal series forms maiched to the digital processing of higher order
statistical informations and successive noisy observations. Especially in a specific
case when up to the second order moments are of main concern, it is proven that one
of the proposed estimation algorithm becomes completely consistent with the well-
known Kalman filter[1], which is called a wide sense digital filter. The effectiveness
of the proposed methods is experimentally confirmed by applying them to the actual
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acoustic environments — more specifically, the estimation and prediction problems
for the reverberation characteristics in a room.

2. BASIC FORMULATION

First, it is necessary to establish a model for the environmental sound systems in
order to derive its dynamical state estimation algorithms, i.e., wide sense digtal
filters. Now, let the system dynamics be given in the following general form based
on the time-series analysis{2]:

T4l = Fk(mk,uk), (1)

where z; is the sound intensity and called a state variable, u; is a non-Gaussian
random input sound, and Fi(.) is a non-linear function. The observation mechanism
can be generally modelled as:

Yk = Gr(zx, v), (2)

where y; is an observation of the system, vy is an additive background noise(called an
observation noise) of arbitrary distribution type, and G4(.) is a non-linear function.

Before proceeding further analysis for the theoretical forms of Eqs.(1) and (2), the
introduction of the well-known Bayes’ theorem is basically important, which is given
as:

Pz Y1) Plyx| 2k, Y1) _ P(zg, yx|Yeo1) (3)
P(yx|Ye-1) P(yx|Ye-1)

where Yy = {y1,¥2,..., ¥} is a set of observation up to a k-time stage. As men-
tioned above, the main purpose of the introduction of Bayes’s theorem is that it
can generally match with a variety of non-linear and non-Gaussian properties, and
furthermore a possible variety of human-side evaliation indexes. The problem here
is to estimate successively the probability density function(abbr. p.d.f.) of a state
variable, z;, based on the noisy successive observation data, yx, under the presence
of a background noise.

P(kuYk) =

3. ON-LINE ESTIMATION OF REVERBERATION TIME BASED ON
NOISY OBSERVATION

Now, in order to reflect hierarchically the linear and /or non-linear correlation effects
of the successive observation, yx, on the state variable, z, we expand the joint p.d.f.,
P(zy, yx| Y1), into the orthonormal series form, because all the correlation informa-
tions are included in this expression of joint p.d.f.  Here, the base p.d.f.’s refecting
the human-side advance planning may be employed as the first expansion term.
Let Pp(2x{Yik-1) and Po(yx|Yi-1) be such base p.d.f’s and expand P(ax, yi|Yi-1), as
follows:
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Pz vl Yoct) = PolzelYee) Po(al V) 3o 3 Avn(Bom P (@0)0a®(u),  (4)

m=0 n=0

where ¢,1(z;) and ©,P(yx) are the orthonormal polynomials with the weighting
functions, Pyp(xx|Ye—1) and Po(yx|Yi—_1), respectively as follows:

[‘Pm(l)(xk)ﬁonm(xk)Po(xktyk——l)d-'”k = Sma, (5)

/90 (k) 2n P (y5) Po(yk| Yeo1)dyk = bpmn- (6)

For example, the follwoings can be considered as Po(zx|Yi-1) and Po(yx|Yr-1):
(1)When each marginal p.d.f., i.e., P(.|Ys-1) , is correspondingly taken as Pp(.|Yx_1),
the state estimation algorithm which can bring all of only mutual correlation effects
of yx on zy in strong relief along the essence of estimation principle is obtained.
(2)When the p.d.f. which describes approximately the main or distinctive portion
of the phenomenon of concern is skillfully extracted as such Po(.|Yy_1), the state esti-
mation algorithm, in which the series expansion converges rapidly only with use of a
few beginning expansion terms, can be obtained. (3)When the standard probability
distribution, e.g.,Gaussian, gamma or Poisson distribution, or one whose statistical
properties are a priori well-known, is taken as Fy(.|Yx~1), the state estimation algo-
rithm, in which plenty of intellectual data processing techniques are effectively used,
can be obtained in close connection with well-known standard informations. In fact,
when Gaussian, gamma or Poisson distribution is especially taken, the correspond-
ing orthonomal polynomials are realized directly by Hermite, Laguerre or Charlier
polynomials, without using the complicated Schmidt’s orthogonalization method.
(4)When the artificially optimum p.d.f.’s arc used as Py(.|Yx_1), giving priority to
the convergence of computation, artificially skillful state estimation algorithm can
be obtained.

Substituting Eq.(4) into Eq.(3), we have the following cstimation algorithm:

m‘O Zn—o mn(k)CNm Sonm}(yk)

fu(ze) = Lo Aon(k)pn®(yk) ’

where,

fu(xe) = Z Cnm@m N (@x). (8)
m=0
In order to show the actual eflectiveness of the present method, the application is
made to the estimation problem of a reverberation time in a room f{rom the noisy
observation data. It is well-known by Sabine’s reverberation theory that the sound
energy density, z(), in a room is subject to the well-know differential equation,

dz(t) _ 6
di = “Fo.’l,‘(t), Fo = m, (9)
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where T is a reverberation time of the room. Eq.(9) is transformed into the following
discrete form:

Tht1 = Fzi,  F = exp(—FoAt), (10)

with a sampling interval, At. Letting ® = FyAt, and the initial sound level be X, (
zo = Ep - 10%0/1% Fy = 10~"?watt/m? ) and considering the additivily property of
energy on an objective sound and a background noise, the observed sound level, Y,
is expressed by

Yy = 10logo(10%0/10%=%* 4 1g¥a/10) (11)

Considering the reverberation decay of Eq.(10), we have

@k = (pk—l- (12)

Eqgs.(11) and (12) respectively correspond to observation and system equations. The
estimate of the reverberation time at the k-th stage, denoted by Ty , is calculated
by the estimate of ®, as T} = 6At/(®logjpe). In this experiment, the sampling
time was 1/20 s and true value of reverberation time, 7', was measured to be 4.3
s{(® = 0.16) in advance without a background noise. The estimated resulls are
shown in Fig.1.
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Fig.1 Estimated results of a reverberation time in a room contaminated
by a background noise for three initial conditions.

4. ON-LINE ESTIMATION OF REVERBERATION CURVE BASED
ON NOISY OBSERVATION

Suppose that the estimation algorithm of digital filter is first given by the following
form with use of the successive observation for purpose of restricting artificially the
expression framework of estimation algorithm in advance for practical use:

oo

flex) = 3 en (k) paly). (13)

n=90
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The problem here is how to evaluate the parameter, o,,f)(k). {g.(7x)} is a sequence
of linearly independent polynomials which can be determined according to the engi-
neering need and are not necessarily orthogonalized. Now, a sequence of orthogonal
polynomials, {8,(yx)}, can be constituted based on {@,(yx)} by using the Schmidt’s
orthogonalizing technique, as follows:

Buln) = }: M), [ Om()0a (90 P()de = Babn,  (14)
=0
where the weighting functlon, p(yx), is given in advance by considering the properties
for experimental data and data processing. Now, P(yx|zx,Yx-1) can be expanded
with use of 8,(yx), as follows:

Pk, Yis) = P(uelYict) 3 Dale2)6n(sn) (15)
= 1 P(yk|:ck,Yk 1) .
Drfxx) = B.) Py Oy ) p(ysc) . (16)
We finally obtain, a,(k):
oz,,(f)(k) = {(f(zx) Dn(z)|Yiu1), )= i nDy(zk). (17)

In order to demonstrate the actual effectiveness of thls method, the application
is made to the estimation problem of a reverberation curve in a room from the
noisy observation data. Considering the additivity property of sound energy, the
reverberation mechanism is given by

Yk = Tp T Uk, (18)
S
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Fig.2 Estimated results of a reverberation curve in a room buried in a
background noise. (®) denotes true values of a reverberation curve;
(o) observations; estimate by Ist approximation; ------- esti-

mate by 2nd approximation; —-—estimate by 3rd approximation.
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where vy is a background noise and yi is a noisy observation. The reberveration
curves estimated by the present method are shown in Fig.2.

The present method can be applied to the paremeter estimation problem for a
reberveration time of the room. From Eq.(10), 7z, = zoexp{—®xk} is obtained.
Thus, the observation equation becomes as follows:

yr = voexp{—Pxk} + v (19)

In these experiments, the sampling time was 1/30 s and the true value of a rever-
beration time was measured to be 4.8 s without backgound noise. The estimated
results are shown in Fig.3.
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Fig.3 Estimated results of a reverberation time in a room buried in a
background noise. ---~--- estimate by 2nd approximation;

estimate by 3rd approximation. :
5. CONCLUSIONS

Two types of the state estimation methods for reverberation characteristics of the
environmental acoustic systems have been discussed by putting emphasis on the
principal viewpoint. Experimental results shows the practical effectiveness of the
proposed methods. Detailed calculations for the derivations of the estimation and
prediction algorithms have all been omitted here owing to the page limitation and
our main attention was solely paid to its physical meanings and the essence of
mathematical realization.
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