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Abstract

This paper presents two experiments where feature
structures and unification provide an explanatory
framework for what has been called illusory conjunc-
tions in visual perception. Feature Structures and Uni-
fication has been successfully applied to computational
analyses of natural languages. However, this efficient
computational technique has not been experimentally
tested among human subjects. This is an attempt to
show some psychological validity for the notion of fea-
ture structures and unification.

1 Introduction

This paper examines some psychological plausibility
of feature structure representation and unification, in
the arca of letter perception. Our visual system in-
volves two successive stages of processing visual inputs:
preattentive and attentive stages. In the preattentive
stage, simple features are processed rapidly and in par-
allel over the entire visual field. Our visual system in
the first stage processes retinal images through sev-
eral separate channels, i.e., luminance, color, motion,
binocular disparity and texture ( for review, see van Es-
sen and Maunsell, 1983; Zeki and Shipp, 1988). These
channels process a retinal image almost independently
from each other. In the second attentive stage atten-
tion integrates the outputs from the chaunnels and lo-
calizes a particular visual object in the visual field.
In order to segregate figure from background and to
recognize what a given object is, the outputs coming
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from several channels need to be combined. It is in the
second stage that attention plays an important role in
integrating the outputs which different channels in the
first stage processed

As this brief account suggests, the psychological
function of attention may be likened to the operation of
unification and the outputs coming from various chau-
nels can be regarded as values as in feature-value logic.
In the present experiment, features are types which are
transferred from the higher order knowledge. In this
paper we investigate this possibility experimentally in
relation to illusory conjunctions.

The feature integration theory in visual perception
outlined above has been proposed by Treisman aud
Gelade (1980), Treisman(1988), ete. The theory gives
a plausible explanation to the role of attention. Treis-
man regards attention as integrating primitive features
of an object, so that we can perceive an object as the
result of integrating such features. In order to demou-
strate the integrative role of attention experimentally,
Treisman and her colleagues have repeatedly used an
experimental procedure known as the elicitation of illu-
sory conjunctions, where by integration irrelevant fea-
tures, we actually see an illusory object whick is not
presented on the display.

The psychological function of attention proposed
by Treisman may be defined as Seligman’s perspec-
tives in Situation Theory (ST): for definitions, see
Nakano, 1992, and Nakano, 1992,. The main differ-
cnce between Seligman’s perspectives and the present
approach is that Seligman’s perspectives do not involve
unification. Instead, Seligman emphasizes the func-
tional roles of perspectives, but fails to see them as a
more general operation of integraiion which yields a
cognitive unit. Here we regard attention as triggering
off the operation of unification.

The version of ST taken up previously was origi-
nally conceived as modelling visual scenes (see Barwise,
1981; Seligman, 1990). We have seen elsewhere that
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most of Seligmar’s definitions of perspectives are trans-
latable into the corresponding notions in a Boolean
valued model. In a recent version of ST, the theory
of channels s introduced into the framework( see Scll-
igman,1993; Barwise, Gabbay and Hartonas, 1994, etc.
). The metaphysical picture of channels given by Sell-
1gman(1993) does not differentiate physiological chan-
nels from classification-based featural knowledge at the
higher level. Since the theory needs to be elaborated
further, the present paper does not pursue some pos-
sible connections between the channel theory on one
hand and physiological channels, typed features (both
implicit and explicit classifications in the knowledge
domain), values (the outputs from the psysiological
channels) on the other. The latter terminologies are
used In the present paper.

There are several ways of characterizing Unifica-
tion( see Kay, 1985, Kaplan, 1983, Ait-Kaci, 1984,
Kasper and Rounds, 1986, Goguen, 1989, Carpenter,
1993, Kogure, 1993, etc.). The present interpretation
is based on a Boolean -valued model, but the essential
features follow the standard feature structures. Briefly,
unification is a unifier which can specify a least up-
per bound but the elements belonging to a cognitive
unit must be compatible. The compatibility check-
ing is defined as the existence of an element which is
an greatest lower bound for all the elements belong-
ing to the same cognitive unit. Thus, in the present
Boolean -valued view, iff there 1s an maximal ideal and
a ultrafilter for a given cognitive unit, all the elements
(all the feature-value pairs) are unifiable. How do we
know that something forms a cognitive unit? We as-
sume any knowledge must be already stored in cogui-
tion and be retrievable at our disposal. This assump-
tion does not prevent our agent from learning or in-
ferring a new thing. Ouce it is learned or inferred, it
is a part of his/her knowledge. We also assume that
a part of one’s knowledge is fed back in recognizing
a visual object. That is, typed features (classification
knowledge) are fed back in visual perception to aid the
task of visual perception; wihtout any knowledge one
can only perceive a collection of physical values, which
is not a usual understanding of letter/object percep-
tion. On the other hand, actual physical values such
as luminance, color, motion, texture and binocular dis-
parity are, we may assume, fed forward to be matched
with typed features. These feed-forward and feed-
back mechanisms can be defined as maximal ideals and
ultrafilters. Therefore, unification and feed forward
and feed-back mechanisms are jointly occurring and

defined as an concomitant operation in this paper

I the next section, we give the present experimental
rationale and some definitions and we also illustrates
how the present framework can explain illusory con-
junctions. In the third section, a few predictions de-
rived from the present view are presented. In the final
section, we discuss the results.

2 A Basic Framework and Ex-
perimental Procedures

The purpose of this section is to give au illustrative ac-
count of Treisman’s attentive integration of features in
terms of Unification in a Boolean valued model. Treis-
man’s experiments deal with the linkage between the
preattentive stages of visual perception in which the
physical properties (values) of stimull are processed
preattentively without being localized, and according
to our knowledge attention integrates those physical
values and localize them as a cognitively meaningful
unit. It is important to note that ‘dimensions’ aud
‘features’ in psychological terms roughly correspond
to typed features (types) and values (tokens in some
cases) in logic respectively, although the definitions in
experimental psychology tend to be more task specific.
Garner(1974) defined dimension as a set of mutually
exclusive values for any single stimulus and the word
feature to refer to a value on a dimension. For instance,
a line can be both yellow and green (values on differ-
ent dimensions), but it cannot be both vertical and
horizontal (values on the same dimension). As these
examples indicate, the referents of these psychological
definitions depend on experimental tasks. In order to
avoid confusion, we use the word “features’ to refer to
typed features and ‘values’ to denote physical outputs
from separable physiological channels.

It is common to distinguish two or more levels of
processing; intensities, wavelengths, retinal locations
and binocular disparities are coded early at one level.
These pieces of information are then combined, to-
gether with some spatial and structural relationships
between them, and transformed at the same time to
represent functional properties needed for a cognitive
agent to identify what the object is, including sur-
face color, size, reflectances, orientation, spatial fre-
quency, the direction of motion, temporal position,
texture and so on. According to Marr’s theory, the
transition comes in two stages: oue between the primal
sketch and the 2'/2 — D sketch and the other between
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a viewer-centred and an object-centred representation.
Since we are concerned with behavioral tests, there is
not much point in pursuing the routes of information
flow. For the subjective experience of seeing an ob-
ject, it may be sufficient for usto refer to luminance,
color, texture, motion and binocular disparity, as in
Treisman and Gormican(1988), aud Cavanagh, Arguin
and Treisman(1990). This assumption is justifiable,
since there is a growing body of evidence that a sepa-
rate analysis of each module recursively operates on a
single common representation, while each module con-
sists of a number of separate submodules each of which
yields primitive features so that the primal sketch (
a single common representation ) is represented as a
neural event in the form of conjunction of all the prim-
itive features: see Marr (1982) and Treisman and Sato
(1990).

This brief overview suggests two things. First, the
hierarchical structure with recursive operations is in
keeping with a Boolean-valued model. Second, our ex-
perimental task is a letter detection : K and D. In order
to say which lines are primitive constitivents for the
visual input, we do not need to go into detailed phys-
jological specification, as long as our putative features
are compatible with the primal sketch or the stimu-
lus properties. Further, the primitive features tend to
be processed in parallell: see papers cited above. The
features identified by the parallell processing criterion
are those that migrate independently to form illusory
conjunctions {Treisman and Peterson, 1984; Treisman
and Schmidt, 1982). So, as a preliminary investigation
to check our assumption, by assuming that K consists
of a vertical bar *|" and a wedge ‘<’; and D, a vertical
bar ‘" and the mirror image of C, we ran pilot exper-
iments. The results showedthat these features could
be considered as a set of primitives used by the visual
system, according to Treisman’s theory. For this rea-
son. we assume here that the letters, ‘K’ and ‘D’ can
be represented as two typed features: in ‘I a vertical
bar ‘" and a wedge ‘<’ and in ‘D" a vertical bar ‘|’
and the mirror image of C. These constituents need to
be unified at the early stage of perception. In fact at
the early stage of visual perception model it is often
assumed that constituent features are perceived sepa-
rately (see McClelland and Rumelhart, 1981 and 1986,
etc.). There are many anatomical and physiological
discoveries that many separate visual areas specialize
in coding different properties (Zeki, 1981;van Essen
and Maunsell, 1983; Maunsell and Newsome, 1987).
For these reasons, Treisman experimentally tested her

proposal of free-floating or pooling hypothesis of sepa-
rately processed features. This hypothesis enabled her
and her colleagues to explain the formation of illusory
conjunctions. Let us illustrate illusory conjunction iu
the present experimental settings

Since Treisman and Gelade(1980) report that re-
spouses distribute bimodal, and Treisman and Gormi-
can(1988) adopt a signal detection theory, we have also
adopted the elicitation technique of the signal detec-
tion theory in the following two experiments. At the
onset of the K experiment, a digit (7, 8 or 9 randomly
chosen by the computer) was displayed at the central
position of the CRT and the subjects reported back
the digit they saw. Six kinds of stimuli were used:

(1) <<<5(2) |

< [(3) | < X
(4) < K <; (5) | K [;(¢6

DK X .

These stimulus sets were displayed vertically on the
CRT, but for the sake of typographic reasons they were
presented horizontally here. The stimuli were placed
in the left side or in the right side of the central digit
in order to examine the anisotropy, i.e., the figure su-
periority of the left side of visnal field or the letter
superiority of the right side of visual field. By im-
plication, we can infer whether the subjects saw the
stimuli as figures or letters. The exposure time was
71 milliseconds in order to minimize the effect of eye
movements. Throughout the experiment, the target
letter to be detected was counsistently ‘K. Fifteen un-
dergraduates took part in the experiment. There were
480 trials.

In the D experiment, there were four kinds of stim-
ulus sets:

()2 1)0;3) D (1) [ DO,
where ) represents the mirror image of C.

These stimulus sets were displayed on the CRT ver-
tically, as in K experiments. At the onset of the ex-
periment, a fixation point was displayed. When the
subject is ready to start a trial, she pressed the space
bar and after 500 ms a cue (arrow) was displayed for
83 ms. Then, the stimulus set was displayed for 50 ms
either on the right side of the cue or on the left side.
This is to examine the anisotropy effect, as in the K
experiment and also to examine the effect of divided
attention. The target letter to be detected was consis-
tently ‘D’. There were two kinds of trials. In the valid
cue trials, the arrow in the centre of the CRT indicates
the correct direction of position in which the stimulus
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set was displayed. On the other hand, in the invalid cue
trials, the arrow in the centre of the CRT indicates the
incorrect direction of position where the stimulus set

was not presented. In Treisman’s feature integration

theory, attention focuses onthe specific set of features
to be integrated and localized. For this reason, in the
divided attention task which invokes spatial attention.
the subjects would report more illusory conjunctions,
recombining constituent features which are present at
the different locations in the display. Five undergrd-
uates took part in the expeniment. There were 1200
trials in all.

According to the signal detection theory there are
four kinds of responses.

Misses This stands for a subject’s failure of detecting
the target m spite of the presence of the target
on the display. Misses can be obtained from the
stimilus sets (4), (5) and (6) in the case of K
experiment, and (3) and {4) in the D expertment.

Correct Rejections The subject correctly detects
the absense of the target on the display. These
responses can be obtained from the stimulus sets
(1), (2) and (3) in the K experiment, and (1) and
(2) in the I experiment.

Hits The subject correctly detects the presence of the
target on the display. Hits may be obtained from
the stimulus sets (4), (5) and (6) in the K experi-
ment, and in the D experiment (3) and (4).

‘alse Alarms The subject erroneously detects the
target iu spite of the absence of the target on the
display. These responses may be observed in the
cases of the stimulus sets (1), (2) and (3) in the K
experiment; and in the I) experiment, (1) and (2).
[illusory conjunctions are the cases of false alarms
in the signal detection theory.

The experimental paradigm of illusory conjunctions
appears to give evidence that unification together with
the representation of feature structures ( compatible
elements of feature-value pairs) is a cognitively plausi-
ble operation among human subjects. We have some
reasons for this claim.

1. As indicated above. the features identified by the
parallel processing criterion may be considered to
be primitive according to Tretsmau’s operational
definition.

2. The primitive features are separately analized by
the visual system at the early stage. So. the stim-
ulus "K' and ‘D" are decomposed into the respec-
tive features of the vertical bar *|" and the rotated

wedge *<and of the vertical bar " and the mirror
image of *(". These decomposed features are float-
ing or pooled in the master map of attention. ac-
cording to Treisman; they are ready to be unified
Recall that the out-
come of this decomposition is. in terms of visual

and localized by attention.

perception, equivalent to the stimulus sets which
do not contain the targets, e, sets (1), (2) and
(3) in the K experiment and (1) and (2) in the D
experiment: see above. So, when nunification op-
erates erroneously on these sets where the targets
are absent  but the constituent features are visu-
ally presented, the subjects will see an illusory ‘K-
or ‘D" The oecurrences of illusory conjunctions
thus appear to support the operation of unifica-
tion of primitive features,

Therefore, if we could observe the occurrences of il-
lusory conjunction. we will be able to interpret the
four kinds of response patterns in the signal detection
theory as follows. We will regard Hits as the cases of
sucessful unification, Misses as those of unitication fail-
ures, Correct Rejections as correct non-apphication of
unification and False Alarms as the errorneous appli-
cations of unification.

The Misses have been called " feature errors™ which
requires some clarification, since the conjunction of
<< ar 1) does not sugget 'K oor "D However, <
in“<<"and ") in *))" can be signmficant distinctive fea-
tires for aletter 'K or "I respectively, sinee out of 26
alphabtical letters, 15 letters have T and *< and )’
can differentiate *K" or *'I)* from the other 15 letters.
When the exposure duration is extremely brief ( 71 ms
in the "K” experiment and 50 ms in the ' experiment)
the presence of these distinctive markers may be suf-
ficient for some subjects to recognize 'K or ‘D", The
process may be similar to our visual understanding of
a subjective contour, when we extrapolate the missing
line segments in the contour. Just like the extrapola-
tion for a subjective contour, the distinctive features
may evoke the missing bar(i.c.,

‘<"as a'|-evoker’ and
) as a ‘[-evoker’), causing an dlusory conjunction to
be formed. This may explain the formation of illusory
coujunctions in the cases of Misses; *{{<7]. <]} may be
subjectively seen as {1, <] which is unifiable as "K' Like-
wise. {[)]. D]} may be subjectively seen as [|,)]which
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is unifiable as ‘D’.

Posner, Petersen, Fox and Raichel (1988), and
Petersen, Fox, Posner, Mintun and Raichele (1988)
showed data from positron emission tomography con-
cerning the localization of an attention system for vi-
sual spatial information. According to their data, early
visual processing is done in striate visual cortex which
interacts with visual word forms in extrastriate occipi-
tal cortex. Presently, although the general occipital ar-
eas are identified, there are not physiological bases for
‘<-extractor’, ‘| extractor’ and ‘)-extractor’. These
are cover terms for the outputs from several channels
whose physical values are fed-forward. However, the
nature of ‘|—evoker’ is different from these extractors,
since it is the knowledge of the visual shape of the
letters that can evoke the missing bar on the part of
the visual attention system. Thus, it is necessary for
us to postulate and acconunodate some such feed-back
mechanism from our knowledge base into our frame-
work. McClleland and Rumelhart’s lexical model also
proposes abundant and precise feedback among fea-
ture, letter and word levels. The notion of feed-back
and feed-forward mechanisms in the neural system has
also been attested by physiologists (e.g. Damasio and
Damasio, 1992, Crick and Asanuma, 1986, etc.).

The present definitions of feed-back and feed-
forward mechanisms accords with the definition of uni-
fication here. Since the definitions are presented be-
low(see also Nakano, 1993), it may be sufficient to in-
dicate that feed-forward mechanism is defined as max-
imal ideal and feed-back is defined as ultrafilter and
that unification is the joint operation of feed-forward
and feed-back mechanisms. Since major lexical pro-
cessing models propose that lexical processing is auto-
matic and parallel, rather than concious and serial, it
is not necessary for us to have any specific proposal on
the question of which mechanism, feed-back or feed-
forward, operates earlier in visual perception.

3 Some Predictions

The present approach can offer some predictions.
We will measure three kinds of entropy: relative
entropy[I(S&R)], joint entropy[H (S, R)] and channel
entropy [[{S)]. We use the following equations.

I(S&R) = H(R) — H(R|S) (1)
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where S stands for input at an information
source; R, output (the received signal); 1,
relative entropy; H, entropy; p(s;,r;), joint
entropy of S and R; p(s;), input probability
at an information source; and ¢(;), output
probability at an information receiver.

(2)

p(s:lr;)
p(s))

Many thories of visual perception claimm that visual
channels are separate and independent, although the
process of operations is in parallel. If so, relative en-
tropy would approach zero, for the following reason.
Equation (1) can find out the degree of independence
between S and R. Here we regard S and R as the input
and output to a unknown number of channels. If S and
R are independent of each other, p(s;,7;) = p(s:,7(;).
Then,

log p(s;,7;)/p(s.)g(r;) = log 1.0 = 0.0.

That is, if S and R are independent, the value of rela-
tive entropy will be 0.0. In this sense, relative entropy
suggests the extent of independence between S and
R. The relative entropies would influence the ways in
which channel entropes can be evaluated.

Equation (2) represents the joint enropy of input and
output and, as the right hand side shows, the joint en-
tropy measures the sum of the entropy of the input to
the channels and the entropy of the output from the
channels, excluding the overlapping portion of the two.
For this reason the joint entropy is sometimes called
net entropy. When R is independent of S, H(S, R)
can be used to measure the amount of informtion (
the reduction of uncertainties). The net entropy may
differentiate the subjective difficulties among the ex-
perimental conditions.

We can also make some predictions about the chan-
nel entropy in relation to the well-known algorithms for
feature structure representation. Since feature struc-
tures can be regarded as disjunctive normal forms
which is known to be NP-complete , several algorithms
are proposed: Ait-Kaci, 1984; Kaper and Rounds,
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1989, etc. As the above illustration indicates, the
present experimental demonstration may be regarded
as the case of Karttunen's value disjunctions {i.e.,
those disjunctions used to specify the value of a sin-
gle feature). But the entire description can be inter-
preted as a set of structures, cach of which contains
no disjunction. In this case, according to Kasper, Ait-
Kaci’s union/find algorithm has the time complexity
of O(nlogn) where n represents the length of the sun
of mutually disjoint sets. According to Ait-Kaci, the
union/find sequence has a computation time cost of
order at most O(nF~'(n)). The computational dif-
ficulty of disjunctive normal forms is as hard as the
problem of travelling salesman in the plane, and Karp's
algorithin can perform at worst in almost linear time

O(nlogn). As these cases indicate, the cardinal-
ity of the disjoint sets reflects the computational com-
plexity. The channel entropy also reflects the number
of channels used, according to Shannon and Weaver
(1963). For this reason, it is interesting to sce whether
O(nlogn) can be reflected in the channel entropies we
will obtain. The present Boolean valued approach can
predict the speedier time cost than O{nlogn). The
channel entropy would be logn. The reason is as fol-
lows. The present Boolean approach is based on Ra-
siowa and Sikorski’s work (1950) but for the sake of
simplicity I refer to Levy’s version, Jech’s version or as
before; see Nakano, 1992,, 1992, and 1993.

First of all, let us recall our experiment and our ex-
planatory framework for the experiment in particular.
The features are regarded as types as opposed to to-
kens, since features must possess attributive criteria in
the form of classifications in logic (partitions or equiv-
alent classes) wnich can account for various physical
variations fed forward from the visulal input, such as
the differences of sizes, orientation or colors of bars,
rotated wedges, or the mirror images of C. There are
at least two different levels of presentation: whether
the actual transmission of information in neurons is a
chemical or an electrical event, at this physical level the
event must be evaluated numerically, and on the other
hand, at the level of higher order knowledge which en-
ables a cognitive agent to recognize an object on the
display, we will require an abstract and perhaps logical
representation. Furthermore, the higher order knowl-
edge must contain some information about the cor-
respondance between the physical values fed forward
from the visual input and the featural classificatory
information, so that the physical values are processed
as belonging to a feature, and that a bundle of features

should be recopnized as a visual object. The present
approach appears to give some theoretical framework
for this mechantsm. The key notion here is regular
open sets which is clopen, 1e., closed and open. The
following definitions derived from Rasiowa and Siko-
rski's work along with Scott’s insights may clarify the
present position. First of all. we note that the present
Boolean-valued model is based on the following basic
framework, in which we regard our knowledge of any
domain as partially ordered.

Definition 1 (A Basic Framework) Let

B =< B, +. - — 0,1 > b a complete Boolean
algebra. Let By = B — {0}, P = (By, <). We define
topology on P, The Boolean alyebra B" whose elements
are reqular open sets of Tois wsomorphie to B.

Scott’s program involves continuous lattices, but the
present approach is similar to his notion of data types
as continunous lattices. The present definition of By =
B — {0} accords with Scott’s treatment of nndefined
clements, since

{0} = ¢ = anull set = 1.
Let the domain of a set be ). Let us also suppose that
Dy=DU{dl}, and Dn{l} = ¢

115 a collection of undefined values, which means in a
Boolean-valued model that

{1} b€ D =¢=0,

which satisties the above assumption. We also notice
that
{L}+b eD=D=1.

But, with respect to
any s and y € Dg, we define the inclusion relation, C.

such that

rCy=r=1lorr=y.

Then, we get a partially ordered structure (Dg,C,)
which means that y is a greatest element or a least
upperbound of z. In both cases, it is a complete
Boolean algebra but in the latter, it requires the un-
derlying continuity as its framework, since a least up-
per bound is not strictly an element of the domain D.
{L}+ b € D =D = Dy, which contains {T}. Since
there are many points in the neibourhood of x, r may
not be uniquely determined; it may be evaluated in



Experimental Testing of Feature Structures and Unification

many ways. In order to accommodate theses possible
contradictory or incompatible values, we need to in-
clude {T} for this reason as well. Tt follows that in
Boolean terms,

l)] :[)[)U{T} :DU{_L,T} =1

and at the same time,

(L#ET), and {L,T}NnD=¢=0.

So, we can understand that the data types represented
as continuous lattices can be represented in terms of
the present Boolean-valued algebra.

We have seen briefly that Scott’s treatment of data
types as lattices can be considered in terms of the
present Boolean-valued model in its bare skelton. Bor-
rowing his insights, what we are doing here is to
rephrase naively Marr’s idea of visual perception, i.
e., grouping processes operate recursively at different
scales on a single representation. For instance, the |-
extractor is the result of layered grouping operation
involving various channels, as the following tree sug-

gests: K

//\\

" I k) . < )
J |
L] ®

1 |
L] .

1

L]

We have regarded the letter detection task not only
as a physical event where the visual stimuli transmit
some measurable information, but also as a conceptual
event in which the knowledge of constituent features
plays a part. At present we are concerned whether
the physical event can be measured in theory in terms
of continuous function of some sort. It is known that
the Boolean-valued algebra has automorphism, i.e., the
isomorphism of a Boolean algebra onto itself. Thus,
we can establish self-reflexive domain, as in Scott's
progam:

(D— D)y=D.

Hence, if (D, — D,) = D,,
then, D, 11 = (D, — D,) = D,.

The reflexive domain enables us to obtain a continuous
domain, since

D=D; =D,
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Furthermore, Russell’s paradox inherent in the reflex-
ive domain can be avoided by the closure opeation in
the Boolean-valued algebra: see Nakano, 1992,. Ex-
cluding the respective three nodes which are features
belonging to the knowledge domain, the above figural
tree can be evaluated by a partial graph of P, since
the power set of a set of natural numbers (w) is repre-
sented by a Boolean-valued model:

f:P, =P,

= fr) = {J{flew)len C 2},
where e, stands for a finite subset of w.

For these reasouns, we can say that cven if several
channels are needed to process *I" and ‘<’ and the
physical information going through each channel is
computed separately, those values are integrated ulti-
mately as a single value to be matched with the feature
which is fed back from our knowledge source.

Now we are ready to look at our definitions of Feed-
forward and Feed-back mechanisms.

Definition 2 (Definition: Feed-Forward) The
follounng three conditions must be satisficd.

Vbe Bhelv -be ). (3)
Vhe B-(be I A—be ). (4)
1 CJ = 1=JVv J=58 (5)

In the above definition, the first and second clauses
satisfy the requirements for strict ordering which ac-
cording to Karp(1972) is needed for computability and
definability. These clanses relates to Jech’s separative
property as well.

Definition 3 (Definition:Feed-back) The follow-
ing three conditions must be met for some information
to be fed back from the higher order knowledge-buse.

re F(r<par <y
peF, p<qg — q € F
VE'((F'isa filter) AF C F — F = F').

The first clause represents the compatibility which is
one of the two conditions for unification. When the nu-
merical evaluation of a physical event including visual
perception is at issue, the value for r can determine
the threshold for a classification. It is also paossible
for r to be any feature which may suggests a group of
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(complex) feature-value pairs. It is iinportant for us to
note that the present definition of feed-back contains
the specification of compatibility.

At the end of this section, we will examine one more
important point. That is. the ultimate physical valne
fed forward from the physical stimuli can be compati-
ble with the feature which is fed back from the knowl-
edge source in terms of a Boolean algebra. The point
is proved by Scott(1976) which sumimarizes our discus-
ston.

(fUl;)r = B,;. (9)
By = (F[B)s. (10)
{x|f{x) = g(}}. (11)

where f(z) denotes the computation of a finite set F
and g(z), a Boolean algebra.

Our notion of unification takes place at the powt
when equation (11) holds for each feature-value pair.
For these reasons, since the experimetnal stimuli of two
letters are decomposed into two constituent features re-
spectively, we will predict that the complexity of com-
puting the letter identification task requires O(log ).
which will be reflected on the channel entropy, since it
estimates what is happening inside the channels as a
whole.

4 Results and Discussion

As indicated in §2.0, the computational complexity
of feature structures is as hard as NP-cmplcte. 1
Kasper’s alogarithm is psychologically realistic, the
channel entropy would be O(2log2) and At-Kaci's
union/find alogarithm would predict O(21log2) as well.
On the other hand, the present approach would predict
that the channel entropy would be log 2.

First of all, we note that the data obtained were
elicited on the basis of the classical signal detection
theory. Under this assumption the channel entropy
would not be nlogn. If O(nlogn) is tenable under
the assumption of the signal detection theory, the fol-
lowing two conditions must be met. The second equa-
tion shows one of the assumption in the signal detec-
tion theory: the sum of the probabilities of Hits and
Misses is equal to 1.0; and the sum of the probabili-
ties of Correct Rejections and False Alarms (Illusory
Conjunctions) is also equal to 1.0. The first equation
shows that the entropy for a pair of probabilities with

respect to Hits and Misses on one hand and with Cor-
rect Rejections and False Alarms on the other needs to
be expressed as nlogn.

Pilog Py 4 - 4 Dy log Poy + Panlog Pon (12)
=nlogn, wheren € w.
Py Po=- =P+ Py (13)

= 1.0, wheren € w.

However, we can see that there are no positive prob-
abilties which can satisfy the two equations. Suppose
there is a set of probabilities which are necessarily pos-
itive:

P={Dlypin=1, 00}
Let nlogn be f(xr)and 0 < 2.
Then, f'(z) = logn + 1.
When 0 <2 < 1, f(x) <0.
VP e Pand0 < P, < 1.0
Therefore, P, log I < 0.0.

in
Thus, Z P log P, < 0.0.
vl
When n > 1, nlogn must be greater than 0.0.
2n
Thus, Z P log I’ < 0 < nlogn.
11

n

> Z Plog P, < nlogn.

=1

This is contradictory to the condition which must be
met under the assumptions of the signal detection the-
ory. The discussion shows that there is no positive
probability which satisfies the above two conditions.
This suggests that the signal detection theory is not
compatible with the union/find alogarithm or that the
two assumptions are not likely to be realized at the
same time in real life.

Tables (1), (2), and (3) in Appendix represent the
results of the experiments. Since the present paper is
mainly concerned with feature structures and unifica-
tion, we will omit psychological discussions concerning
the binocular disparity and the net entropies here. For
the purpose of the present paper, it may be sufficient
to point out that the invalid cues yielded more misses
and illusory conjunctions than the valid cues, and that
what has been called additive item effects” (i.e., the
presence of the items which facilitates the formation of
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illusory conjunctions auch as X and O in the present
experiments) ecilted the same amount of illusory con-
juctions in the two experiments. Since in both experi-
ments, the values for I(S& R) are sufficiently low, chan-
nel entropies are computed accordingly. In the case of
the I{ experiment, the channel entropies turned out to
be log2.0. In the D experiment, apart from the sec-
ond pair, the remaining pairs yielded log 2.0. Since the
experimental conditions of the D experiment were dif-
ferent from the K experiment, we ran the D experiment
again in the manner of the K experimental conditions.
As Table 3 shows, this uncued experiment turned out
to be log 2.0, replicating the results of the K experi-
ment. In the present study, we dealt with the fourteen
cases and except for the one case, the channel entropies
were estimated as log 2.0, The results thus show some
evidence to confirm the present interpretation of fea-
ture structures and unification.
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Table 1 represents the results of K Experiment and

Table 2,

those of D Experiment.

Table 1: K Experiment{nnened)
Stimuli \msot1();)\_L}{1717:“\ I ( u[f THSERY TS R T1(S)
<<<li<K< Right | 0.57 | 0.11 0.126 1209|0692
<< < & <K< Left ’ 0.8 )_1' 0.213 1.123 0.691
<] KK Right | 077 | 039 10076 | 1325 | 0.693
| <1 &K Loft | 0.89 | 042 0.131 1207 | 0.693
| <X &KX Right | 0.68 | 0.4 0.040 } 1.343 (0.693
Clexunx |t fose fo6 fooin i Joeos
Table 2: ) Experiment
Stimuli—[ Anisotropy | Ill. Con. or Misses I{S&R)
b Right | 0.142(valid) 0.167 (invalid) 0.0457
N Left | 0.142(valid) 0.133(invalid} | -0.0006
1)y O Right U 150(valid) 0.400(invalid} | -0.0276
1) O Left | 0.158(valid) 0.600(invalid) | -0.0747
| D Right | 0.083(valid) 0.267 (invalid 0.0248
| D | Left | 0.070({valid) 0.267(invalid) 0.0343
| DO Right | 0.100(valid) 0.400(invalid) | -0.0450
| DO Left | 0.100(valid) 0.267(invalid) 0.0632

Table 3: D Experiment:

Chanuel Entropy

Stimuli | Anisotropy || I(S) (Divided Attention) || I(S)(Uncued)
& D] Right 06931 06931
)& D 1 Left 0.7140 0.6931

1)O&|D Right 0.6931 0.6931
1)O&|D Left 0.6931 0.6931
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