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Machinery, Osaka University, Yamada-oka, Suita, Osaka 565
Japan.

Recently the sheet forming simulation technology revealed great progress in the sense of
practical application in the automotive, electric/electronics and aviation/space industries. The
goal of sheet forming simulation is to embedded in the design engineering system which is
consisted by the analysis and synthesis modules. This design simulation system predicts the
slackness of sheet and estimate the formability, and search the optimum
material/forming/structure conditions. This OVER-ALL OPTIMUM DESIGN can be classified as
follow;

1.ANALYZING PROCEDURE: Numerical simulation based on nonlinear theories -geometry,
material and friction nonlinearities-

2. OPTIMIZATION PROCEDURE: Optimum design based on mathematical programing and Al
technologies, those are implemented in CAD/CAM/CAE System - Concurrent Engineering
System-.

In this paper, four subjects will be discussed; (1) State of arts of computer simulation
technologies in Japan. (2)History of sheet forming simulation. (3) Benchmark problems. (4)
Future technology in the sheet forming simulation.

1. State of arts of computer simulation technologies in Japan.

In this ten years, the metal forming process simulation, in the material /
manufacture/structure design, reveals the great progress based on the computer hardware
and software technology development. Especially computer and network engineering
contributes this progress very much. Table 1 shows how the simulation technology
developed in the past and future. In the future, the requirement wil be more complex and
high demanding, therefore the simulation paradigm should shift from high efficiency mass
production engineering to the simultaneous engineering system by integrating
independent/diverge and integrated/harmonized technologies. As shown in Fig. 1, automotive
industries implemented these computer simulation modules conjunction with COMPUTER
GRAPHICS technology in VIRTUAL REALITY world, which is created in computer space. The
forming simulation is combined with car body designing, die designing and NC machining,
before the real forming process as shown under half of Fig.1. Fig. 2 shows VIRTUAL
MANUFACTURING in VIRTUAL FACTORY generated by the computer simulation technology.
Before the real forming, the forming process assessment was completed. Trials were
performed by introducing the process design factor and modifying the tool shape and die
setting in the computer CAD/CAE system. Fig. 3 shows the integrated design system for
MATERIAL-PROCESS/FORMING-PROCESS/STRUCTURE-STRENGTH optimization. This simultaneous
design engineering will be completed by the rigorous mathematical modeling and
mathematical programing scheme - ANALYSIS and SYNTHESIS - as shown in Table 2. The
paradigm shift in the ANALYSIS and SYNTHESIS  technology will be realized by switching from
the interpolate simulation by using data-base, say expert system, to the extrapolate simulation
based on the correct physical and information science modeling technologies.



Table 1
DEVELOPMENT of COMPUTER SIMULATION TECHNOLOGY

SEEDS

1. Computer Technology

2. Network Technology

3.Scientific Visualization Technology

4 Numerical Analysis Technology

5. Physics and Information Science Modeling Technology

NEEDS

1.Coverthe Lack ofInformation obtained by Experiment
2.Reduce the Lead Time for Material/Forming/Structure Design
3.Quantitative Estimation of Manufacturing System

4 Establishthe Economical Strategy forthe Management
5.Harmonize the Technoiogy with the Environment

COMPUTER SIMULATION inthe FUTURE
Requirement will be more complex, high demandable, and diverged.
Toresponse thisrequirement, the computertechnology should offerthe
harmonized systembetweenindependent control/diverged systemand
integrated control/unified system, ratherthan the efficientsystem based
onthe unification/standarzation, homogenization and mass treatment.

PARADIGM SHIFT
The high quality micro-processorand down-sizing of computer promise
the paradigm-shift Fromthe interpolate simulation -LEARNING
SIMULATION-such like expertsystembased on the data-base
searching, tothe extrapolate simulation -CREATIVE SIMULATION- by
employing the physical and information science modeling technologies




Table 2

COMPUTER SIMULATION
for
METAL FORMING

L
ANALYSIS SYNTHESIS
1. NONLINEARFEM| | 2PHYSICAL MODEL| | 3. INTELLIGENT 4. MATHEMATICAL
CAD/CAM/CAE PROGRAMING
[ I
1-1.Numerical Method 2-1. Material Model 3-1. Expert System 4-1. Design Parameter

(a) explicit integration
static, dynamic
(b) implicit integration
static, dynamic
1-2. Formulation
updatedlLagrange
total Lagrange
Euler
Arbitrary E-L
1-3. FE Model
(a) 3-D model
solid, shell
membrane
(b) 2-D model
plane strain
plane stress
(c) 1-D model
truss, line
beam
1-4. Numerical
Integration
(a)full integration
{b)reduced integ.
(c)selective reduced

integration

(a) strain rate sensitivity

rigid/elastoplastic

neural network

fuzzy control

rigid/elastoviscoplastic GA algorithm
neuro-chaos

3-2. CAD/CAE System

{b)thermal effect

(c)yield function

isotopic surface model
anisotropic solid model
(Hill, Barlat....) standard CAD data
(d)hardening law ( IGES
isotropic NURBS, STEP)
anisotropy 3-3. Data Base
(e)constitutive equation material
associate flow law (biank, tool)
non-associate flow law lubricant
crystalline plasticity surfacetreatment

2-2. Contact Model forming process

(a)riction law FLD criteria
Coulomb law Formability criteria
constant shear 3-4. Networking
{b)contact evaluation Information transfer
tool featuring parallei strategy
data control

3-56. Al

(rigid, deformabile)
contact force
(penalty method, numerical algorithm

,kinematical descript. ) adaptive control

(A) Physical Parameter

(a) material properties

elasticity(E, v)
plasticity
(yield condition,
anisotropy)
(b) friction properties
friction coefficient
external parameter

internal parameter

(B)Boundary Condition

(a) mechanical cond.
load, pressure

heat,draw-bead

(b} geometrical cond.

{

(

tool shape

4-2. Constraint Condition

a) instability limit
necking, wrinkling
b)formability requirement

spring-back

4-3.0bjective Function

forming energy minimum
uniform deformation

absorbed energy max.
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Fig.2(a) The first simulation by ROBUST. Fig.2(d) The first experimental verification.

Deformed shape with thickness Real stamping by using SOFT TOOL.
strain distribution.

Fig.2(e) The second experimental verification.
Open draw forming.

Fig.2(b) The second simulation by ROBUST.
Wrinkling shape by using CG.

Fig.2(c) The third simulation by ROBUST. Fig.2(f) The real production result

Deformed shape with thickness strain distribution. in the stamping line of MITSUBISHI
MOTOR Co..

Fig. 2(g) Simulation result )
by OPTRIS(Dynamic Software Co.). Fig. 2(h) Simulation result
Before the final stage. by OPTRIS(Dynamic Software Co.).
The final stage.

Fig. 2. Virtual Manufacturing of PAN REAR FLOOR and its experimental verification.

- The comparison with simulation results and experiments, performed in the stamping line of
MITSUBISHI MOTOR Co.(H. Aoch) -.
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2. History of sheet forming simulation.

In this chapter, rough sketch of the history of finite element sheet forming analyses appears.
In 1978, Wang, N.M. and Budiansky, B. have analyzed the hemi-spherical punch stretch of
disks by nonlinear elastic-plastic finite element method as shown in Fig. 4. After eight years
blank of progress, in 1985 Toh, C. H. and Kobayashi, S analyzed the square-cup deep
drawing by rigid-plastic finite element method, and also proposed the optimum design, which
can be categorized the optimum design by using the inverse analysis. Until the end of 1980’
s, finite element simulation has been recognized as the research tool to solve the academic
problems, even there have been already the commercial base software packages, such like
nonlinear finite element codes, say MARC, ABAQUS and NIKE. And also the trial to solve the
real automotive panel stamping process by Stoughton in GM in USA. But still the simulation
has been done independently, there was no interface between CAD data and no pass the
simulation results to NC tooling in CAM system. In 1988, the big change started in the
practical application for the industrial forming process simulation. Nakamachi and engineers in
HONDA Co. analyzed the single action stamping process by using the CAD surface data for
the tool and elastic-plastic membrane element for the blank. Fig. 6 shows the simulation
results. Simultaneously, Tang, S.C. of FORD MOTOR Co. has shown the FE results of rear
fender stamping by employing elastic-plastic shell element as shown in Fig. 7. Further in
NUMIFORM89 conference in 1989, Honecker,A. and Mattiasson, K. presented the oil-pan
forming results, which has given a shock for the automotive engineers, because of the
detailed wrinkling prediction during the drawing process was appeared as shown in Fig. 8. The
dynamic-explicit type finite element appeared in this conference. This DYNA-3D analysis
promoted the researchers and engineers of the FE simulation to develop own or commercial
base program to the actual forming process simulations. In 1990 and 1991, Tang, S.C.(Fig.9)
and Aoh, H and Nakamachi, E. (Fig.10,11)applied their own FE codes to simulate the
automotive panel stamping processes. From 1991, DYNA-3D, PAM-STAMP, ABAQUS-explicit,
OPTRIS, RADIOSS started to apply their explicit code to the panel stamping process in
automotive industries. But it started to publish after 1991 VDI FE simulation conference - 1st
NUMISHEET conference-. In 1992, the more reliable and comprehensive FE program based on
elastic-plastic shell element and nonlinear contact algorithm have been developed and applied
to the real forming process. Makinouchi shows more accurate results of wrinkling of square cup
drawing as shown in Fig.12. PAM-STAMP has shown more practical results of MAZDA panel
stamping as shown in Fig. 13, which has shown the possibility to adopt FE simulation for the
die designing. In 1993, NUMISHEET93 conference in Tokyo gave a chance for FE developers
to meet, discuss and recognize the now situation of sheet metal forming simulation
technology. Fig. 14 shows the CG output of front-fender die and also the simulation results
obtained by ROBUST, Nakamachi has developed. Detailed results will appears in the following
chapter.
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3. Benchmark problems.

Every three years, we have NUMIFORM conference, started from SWANSEA conference in
1982. In these conference we could see how the progress of the numerical simulation
technology for the industrial forming process analyses and syntheses. Historical review of
simulation technology relating to benchmark problems can be found as follow.

Actually, the state of numerical simulation for the sheet forming in 1975-1980 was the
baby age. The subject is definitely simple, such like hemispherical punch stretching and
drawing or square cup stretching and drawing. The material model is also rigid-plastic or
elastic-plastic. Most of the people employed membrane finite element based on finite
deformation theory of continua. Basically, simple boundary condition and simple friction
condition - the constant shear force resistance or Coulomb friction law -. The contact
algorithm is not enough to overcome the difficulty of convergence to satisfied the equilibrium
condition by solving the highly nonlinear problem.

In 1980-1985, there are no evident progress, just the improvement of material model - so
many material model for elastic-plastic, say J2F, J2D, Corner theory, and Void nucleation
theory based on the plastic potential theory, and Crystalline-Plasticity based on the micro
structure dislocation. The rate sensitive model, say rigid-viscoplastic and elastic-viscoplastic
model. But there were not so many model for friction. Still Coulomb's friction law is mainly
used. The updated Lagrange formulation, the elastic-plastic material model, Coulomb friction
model, the membrane finite element and the simple functional description of tool were
commonly used.

In 1985-1990, the modification of shell element and contact algorithm conjunction with CAD
tool data. The convergence problem was attacked by the numerical analysis experts and
improved very much. The practical application for the industrial sheet forming process
simulation appeared. Dynamic-explicit FE program was started to apply to predict the wrinkling
problems. Those problems are very important in the industry but very difficult to solve
because of including the instability, bifurcation and singularity. Especially for the implicit-static
FE program , like NIKE, MARC and ABAQUS, the buckling initiation and post-buckling problem
gives the serious problem of equilibrium satisfaction. Therefore, the beginning of 1990's the
explicit type FE simulation codes have shown the great progress of simulation in the sense of
practical application.

From 1989 NUMIFORM conference, first benchmark problems of sheet forming has been
proposed. Fig. 15 shows OSU benchmark test results. Wagoner, R.H., Lee, J.K. and
Nakamachi, E. are the organizers. As already mentioned, in this time those were simple
problems, such like the hemispherical punch stretching and drawing, and plane strain
stretching and drawing -like 1-D problem-. Most participants were the static-implicit FE
membrane codes and a few static-explicit one. Most of them adopted the elastic-plastic
material model, because of the requirement of rigorous stress prediction. The organizer
recognized that the stretch problem is basically stable deformation process, therefore most
analyses show reasonable results, without geometrical model and total strain analysis. But the
drawing problem made clear the difficulty of convergence, because of unstable deformation
process -loading, unloading and the possibility of buckling-. The results are terribly scattered.
Fig. 16 shows 2nd benchmark problem results in 1st NUMSIHEET conference in Zurich in
1991. The CAD data of tool was delivered by the organizer, Reissner, J. and Hora. In spite
of rather complicated shape of tool as shown in Fig. 16, the numerical results are not so
spread. It seems that the great progress of FE simulation technique has been achieved by
static-implicit, static-explicit and dynamic-explicit FE programs. But still problem of unclearness
of material and friction modeling was pointed out. The best fitting resuit from ETH(now they
named AUTOFORM) was obtained by the model of isotropic plasticity and zero-friction
resistant force. Still there remained the problem of modeling technique, especially concerning
with CAD data transfer.
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In 1993, NUMISHEET93 conference, those organizer is Makinouchi, A., Nakamachi, E., Onate,
E. and Wagoner, R.H., offered three benchmark problems, square-cup deep drawing, front
fender stamping, and 2-D draw bending.
1st problem can be featured as the simple shape tool and stretch dominant stable
deformation. Therefore we could see the accuracy and verify the material and friction model
availability. The strain distribution results obtained by static-implicit(Sl), static-explicit(SE) and
dynamic-explicit(DE) showed good agreement with the experiment. The nonlinear FE analyses
can predict this kind of stable deformation with enough accuracy. We concluded that the
material model can not predict the forming limit, if there is no experimental data of FLD. There
are so big different between the experimental results of Aluminum alloy (Mg contents) failer. If
we have FLD from experiment, we can predict rather good accuracy. But this is not mean the
material model for failer prediction is correct. This will be a future problem for the material
modeling. There remains also the friction model. No new model than Coulomb friction law
was proposed.

2nd benchmark problem results are shown in Fig.17(a) and (b). The participants are also
shown in Table 3. We compared three types of FE codes, say SI,SE and DE. We can
featured as follow; Sl gives good accuracy, but still difficulty of convergence - improved very
much-, :
larger CPU time and the less finite element number. SE shows robustness, without difficuity
of convergence, but not so good accuracy and large CPU time. The less finite element
number means not enough to predict the detail wrinkling mode and strain distributions. This
caused by the limitation of CPU memory and computation time restricted by the number of
freedom to solve the finite element simultaneous equation as same as Sl FE code. DE shows
good prediction of wrinkling because of huge number of finite element and less CPU time
compared with Sl and SE FE codes, but not so good accuracy of strain distributions. DE's
advantage is no necessary to solve the simultaneous equation. But the problem is how to
decide the parameter concerning the numerical damping and analogy between the quasi-static
phenomena and dynamic-impact one. three figures of Fig. 17(b) show the comparison of
thickness strain distribution. S| shows better accuracy than SE and DE FE analyses results.
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Table 3 List of Participants to the Front Fender Simulation

IDepartment. of Materials Sci. & Eng.. The Ohio State University..

FEM code
No. B2-Sim-3
Name
Affiliation
FEM code AUTOFORM
No. B2-Sim-4
Name DRI 00 £ -V
 Affiliation Dept. of Precision Eng. & Mechatronics, KAIST
FEM code FORMSYS - SHEET
No. B2-Sim-5
Name ; D.Y. Yang
Affiliation Dept,. of Precision Eng. & Mechatronics, KAIST
FEM code FORMSYS - SHEET

B2-Sim-6

PN i Heavy Tadusiries L,

FEM code ITAS - 3D

No. B2-Sim-9

Name L. E.Nakamachi

Osaka University
ROBUST

No, B2-Sim-11

Name S.Ikura/K. Serizawa [ H, Tsutamori
Affiliation Toyota Motor Corporation
Name of FEM code ITAS—3D

No. B2-Sim-12

Name S.Ikura /K. Serizawa / H. Ts;
Affiliation S Toyota Motor Corp.
Name of FEM code LS-DYNA3D

S CTUIIN NN B2-SIM 13 i
Name L. M. Taylor

Affiliation Hibbitt, Karlsson, & Sorensen, Inc.
Name of FEM code ABAQUS

No, ) B2

Name M,

_Affiliation McMaster University

Name of FEM code

LTI ST B2-Sim- 15

Name ..E.Onate/J. Rojek /F. Flores. /O, Fruitos
Affiliation International Center for Num. Meth. and Eng. . . ...
Name of FEM code

_No. . B2-Sim-16

K. Mattiasson
Volvo Data Co.

Name of FEM code
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4. Future technology in the sheet forming simulation.

The progress of computer simulation and mathematical programing technologies leads the
new paradigm of material/forming/structure design technology. Fig.18(a) and (b) show the
Integrated Design Engineering in CAD/CAE/CAM system of industrial manufacturing system.
Optimum design, named Over-all optimization, can be realized by employing the numerical
analyses and syntheses technology. As shown in Fig. 18(a), In this optimization process has
hierarchical featuring. As example, three layers can be considered, as the physical modeling
(material and friction), forming process modeling, and boundary condition (tool description by
using CAD data, force boundaries - pressure and draw beads-.) Fig. 18(b) shows FE
computer simulation flow in conjunction with CAD, CG, pre- and post-process modules. The
actual problem of thermal plastic sheet forming design was performed by using FE analyses
(ROBUST) and the mathematical programing (nonlinear programing - direct lattice methods,
most simple one-). In two stage forming process as shown in Fig. 19(a). The stress-strain
curve is also shown. Two design parameter were employed, such like the radius of 1st stage
punch and the punch travel of first stage stretch-drawing. Totally 45 cases simulation results
gave the objective function surfaces as shown in Fig. 19(b). The objective functions
employed are, (1)the deviation norm from the uniform thickness, (2)total forming energy, (3)
the displacement norm summation of each finite element node, deformed by internal pressure
after the final forming stage. (1) and (2) show the optimum forming design and (3) shows
the structure strength design. The constraint conditions are the limits of the radius and height
of first stage punch. This over-all optimization will be a big subject of the computer simulation
of sheet forming design in the industrial manufacturing system - CAD/CAM/CAE, CIM,

~ Concurrent Engineering, Simultaneous Engineering and VIRTUAL MANUFACTURING in VIRTUAL
FACTORY -.

Fig.20 and 21 show the material modeling technology in the future. The anisotropy
predicted by using the plastic potential theory( Barlat model in Fig. 20) or more micro
structure base prediction, such like the crystaline-plasticity model as shown in Fig. 21 (Dawson).
The molecular mechanics simulation is now available for solid mechanics motion prediction. But
still not enough to predict the failer and instability phenomena of sheet metal forming process.
The combination of micro- mezzo- and macro structure material modeling technique should be
developed by the precise phenomenological observation. The experimental observation
technology development will help the numerical modeling technique very much in the future.

Fig. 21 shows the friction model for the galvanized steel sheet, GA, Gl and EG. The features
of cracking and delamination are quite different and therefore the macro mechanical modeling
should be different. In this case we proposed the functional description for the friction
coefficient by employing the parameters, such like strain and contact sliding length.

Fig. 22 shows the different failer points and punch travel in case of square-cup deep drawing.
More precise experimental observation and functional description - the external function and
also internal function formulations are available - should be developed in the future.

These physical modeling technique - material and friction - can be established by bridging the
science and engineering approach.
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5. Conclusion

The sheet forming simulation technology shows great progress in this ten years, promoted
mainly by the computer technology software and hardware development. The trial of forming
design in computer space - VIRTUAL MANUFACTURING in VIRTUAL FACTORY- starts in the
automotive, electric/electronics and aviation/space industries. The forming process optimization
should develop in conjunction with material process and structural optimization. The Virtual
Reality and Networking technologies and the super-parallel computing are also important to
generate this integrated design engineering in CAD/CAE/CAM and CIM systems.
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