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Abstract

To prevent the stable states from the complex

dynamics, the global behavior of the overall
system must be considered. Thus, indircct adaptive
scheme might result in  ncedless responscs.

Discrete-time variable structure controllers for a

well-known. logistic map are designed for two

different sliding hyperplanes. Impulse disturbances
arc fully rejected by the virtuc of discrete-time
variable sturcture comtrol (DVSC). A numcrical
example is given to illustratc the effcctness of the
DVSC. ‘

1. Introduction

Chaos is an ubiquitous and robust nonlincar
phenomenon which permeates all ficlds of scicnce.
Roughly spcaking, chaos is a more exotic form of
stcady-state responsc. It can be secn only in
nonlincar systems. The existence of chaotic
dynamics in systems which by their very nature
arc nonlinear poscs scrious problems for their
control. In recent years, much effort has becn
devoted to the problem of obtaining cffcctive
controllers for chaotic systems. As mentioned in
[5], various techniques for supressing chaotic
oscillations have bcen suggested. From the most
primitive concepts like parameter variation through

classical ~ controller  applications, to  quite
sophisticated one like stabilization of unstable
periodic -orbits cmbedded  within  the  strange
attractor, methods in various aspccts arc dealt

with.
In control engincering approaches, there are

feedback control, feedforward control, adaptive
control and so on. Chen et. al[2] proposc a class
of continuous-time lincar feedback controllers for
a well-known duffing cquation. An elaborated
proofs for the stability and the convergence
property are also sited therein. Indirect adaptive
schemes for controlling chaotic systems are
popular in these days but these schemes do not
give a feasible solution to control, for the
complexitics are arising in their inherent algorithm
like in [6]. Indirect adaptive schemes arc composc
of three parts, plant to be controlled, adaptation
algorithm to estimate the paramcters and control
law to drive the system to a desircd performance.
Each of their algorithms is designed to be stable,
however, since the estimated paremeters  may
cause addisional complex dynamicé to the overall
system, it cannot serve as a perfect solution for
the control of chaotic systems. While indircct
methods are easy to fail, Lyapunov dircct
methods  or  Lyapunov  min-max  (generally
min-sup) controllers [3] can give a feasible
sdlu(ion because it is based on the stability of the
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overall system, ie. a Lyapunov function from
which all of the adaptation andfor control laws
arc derived.

Variable Structure Control (VSC) is a
typical example of robust control. Changing its
structure and thus the contolled process, cxtcrnal
disturbances or uncertaintics arc fully rcjected. For
continous-time  VSC, so many studics arc
accomplished in the litcraturc. In spite that the
continous-time VSC marches on without the cnd,
discrete-time VSC (DVSC) has just startcd. In
this paper, a DVSC of .a chaotic system is
studied. Though we can say the rtobustness of
DVSC only for impulse disturbances, this paper
might provide a start point to a DVSC of chaotic
systcms as wcll as any other nonliner systems.

The rest of this paper consists of the
following. In section 2, the main shortcoming of
indircct adaptive scheme and the previous studics
on Lyapunov min-max controllers are addressed.
The backgroud of DVSC and the design of
DVSC System for logistic map arc outlincd, and
the whole system is simulated in scction 3.
Finally, we draw some conclusions and discuss

about the proposed method.

2. Previous Researches

In general indirect adaptive control systcm,
the paramcters of thc model arc recursively
estimated based on the inputs and outputs of the
process. Thus, by predicting the expected outcome
from the process model, control signal is
calculated in such a way ﬁmt the error between
the desired output and the actual output is
minimized. Qammar et. al. [6] proposed an
indirect adaptive  controller  cquipped  with
quantized lcast mcan square (QLMS) algorithm to
control a modificd logistic map. Two interesting
features arc shown in that. Onc is a projcction in
the 2-dimensional paramecter space of the basin of
attraction for the stcady state, to show the

scnsitivity to initial condition. The basin  has

fractal  boundaries with a  dimension  of
approximatcly 2.5. The other is so called 'avcrage
preserving property’. For cach stablc scquence the
mean of the output is cqual to the relcrence
point. Thus, the output of the system tracks the
reference’ point from a statistical point of vicw.
Huberman - et. al. [4] analyzed the dynamics of
indircct . adaptive systems. On analyzing a certain
class of adaptive systems, thcy showed a
rclaxation chaos, i.e. a chaotic burst. These
complexitics arc the main  drawbacks of the
indircct adaptive control of chaotic systcms.

The problem of obtaining stabilizing
mecmoryless state feecdback controllers for a class
of uncertain  systcms dcscribed by difference
cquations are proposed in [3]. Consider an

uncertain discete-time systems of the form
x(k+1) = F (I x(k), ulk)), (1)
subject to ‘ ;
u(k) = p(k,x(k)) )
namely
x(k+1) = F(k, x()), plk, x(k))) (€))
Suppose that a Lyapunov candidatc given by
Vix) = x'Px @
where 7 in symmectric and positive-dcfinite, is
considered for the stability of (3) about zero.
Along any solution of (3),
Vix(k+1)) = W Fk.x p(kx(k))) (5
where
WA Fkxu):= V(F(kxu)) . (6)
Letting
W' (kxu) = supl W(Fkxu)} (D
a Lyapunov min-sup controller, p is defined if
and only if,
W' (kx,p(kx)) = min{W" (kxu)} (8)
for all k and x.
In this approach, because the stability. is

gaurantecd  under  certain conditions,  the

complexitics as in indirect adaptive systems do

not appear.
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3. Design of Discrete-Time Variable

Structure Control Systems

The problem of inducing convergent

quasi-sliding regimes on  smooth  statc-space
surfaces of nonlinear single-input  singlc-output
(SISO)  discrete-time

addressed in [7]. An extention of the notion of

controlled  system s

rclative degree is used. The rclative degree
determines the time delay undergone by the input
sighals beforc thcy influcnce the output of the
system. The main result of this work is that if
the considered system have relative degree 1,
there exists a control law which induces a
quasi-sliding regime. Howevcr, if thc dcfinition of
convergent sliding regime is defined to be

s(k) (s(k+D-s(k)) < 0 ©

,  which is naively dcrived from the

continuous-time casc, the controlled motions are
unstable about s(k)=0. A convergent sliding

regime is said to cxist, if for all k

ClsUerD | < IsUo | (10)
Utilizing thc above definition of the sliding mode,
Aly et. al. [1] suggest a design method of
discrete-time variable structure systems (DVSS).
Their main study issucs are the rcachability
conditions developed for SISO DVSS, stability
conditions of a sliding mode and a modified
algorithm to simplify the design procedure for
discrete-time lincar systems. A mcthod to reduce
the chattering along the sliding mode and an
investigation of the robust propcrty for the case
of system matrix uncertainties are described in
[8]. So far, the robustness of uncertaintics in
discrete-time  nonlincar  systcms arc not fully
developed.  It's  because  of not  only  the
nonlinearity but also the discrete nature of the
system.
As an illustrative example, we consider a
well-known logistic map which is described by

the following diffcrence equation,

x(k+1) = Ax(k)(1 -x(k)) )
for X [0,4]) and x(k)E[0,1].

As the control paramcter, A is incrcascd, the
system undergoes a period-doubling mechanism
and finally reaches a chaotic rcgime. Bascd on
the convergent sliding mode in eq. (10), a DVSC

is designed for the system,
x(k+1) = Ax(l) (1 -x(K)) + ulk) (12)
For a point sliding hyperplane, s(k) is
defined as
s(k) = x(k) - xa (13)
where x4 is a desired goal dynamic, which can
be a time-varying.
From the condition, (10),

Is(k+1) | = [x(k+D)-xal < Is(| (8
Since the control input takes the following form
in general, )

ulk) = u"+ uslio (15)

EQ

where u is an cquivalent control input and

us(k) is an auxiliary term dcpending on  s(k),
us(k) is expressed as the following,
us(k) = elsUol, lel < 1 (16)
while u®? is calculated from )
IsGe+ Dl = sl (D)
For a line sliding hyperplane, s(k) is
defined as ‘
s(k) = x(k)-xa+a(x(k-1)~xa, lal <1 (18)
From exactly thc same procedure for a point
sliding hyperplane, one can obtain the expression
of the control input signal. Simulation rcsults of
the overall system for a line sliding hyperplane is
depicted in fig. 1. The controller is activated at
time index k=200 after which the orbit of the
process settles to the desired point after a brief
transient. Impulse disturbances, d=0.5 and d=-1
arc applied at time index k=300 in fig. 2 and
fig. 3, respectively. In both cascs, after a short
trasicnt, the equilibrium statcs arc rccovered
successfully. As far as the magnitude of the
control signal is admitted, a larger disturbances

can also be rejected. Step disturbances, however,

arc hard to be rejected for the samc design of
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the sliding  hypcrplane.  Some  modification
algorithm must be needed to overcome (he step

disturbances or uncertainties.

4. Conclusions

To prevent the stable states from  (he
complex dynamics resulting from the addition of
the other nonlincar states, the global behavior of
the overall system which includes the controller
must be considered. Thercfore, if onc want 1o
design a  controller -for supptessing  chaotic
phenomena, a Lyapunov direct mcthod or a
Lyapunov min-sup controller is preferable. Indirect
adaptive  scheme might result  in  ncedless
responses.

Discrete-time variable structure controllers
for a wecll-known logistic map arc dcsigned for
two  different  sliding  hyperplancs.  Tmpulse
disturbances arc fully rejected by the virtue of
DVSC, but for any other disturbance rejcction a
discrete  sliding  surfacc  design  technique  of
integral augmented typc must be needed. The
probicm oif“xobtaining robust DVSC, possibly of
integral augmented type will bc an intcresting

rescarch topic.
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Fig. 1. The output x, sliding function s and Fig. 2. The output x, sliding function s and
control input © with A=38, a=-05, £=05 control input y with A=3.8, a=-05, £€=05
, xa=0.737 and d=0. , xa=0.737 and d=0.5.
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Fig. 3. The output x, sliding function s and
control input u with A=38, a=-05, £€=05

» xqd=0.737 and d=-1.
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