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I. INTRODUCTION

In the past, the application of activity-based travel demand models was limited to
the static and cross-sectional sphere, with few exceptions, due to unestablished theory and
lack of data. The introduction of dynamic features into travel demand models is a
relativély recent phenomenon which reflects the shift in emphasis and widening of
outlook that has taken place within transportation demand modeling in the past. The
realization that peoples’ trips result from activities, justifies the need to analyze activity
behavior patterns as a basis for understanding the dynamic features of travel demand.

From this point of view, "dynamic" anélysis of travel behavior follows the
empbhasis in the field of activity-based analysis on the time dimension and adaptation to
changes in the travel environment (Kitamura, 1988). This emphasis is an outgrowth of
the realization that activity modeling is the key to developing dynamic, comprehensive
transportation models in which the all-important time dimension and individual diversity
(i.e. heterogeneity) are explicitly accounted for. Having the capability to address the time
dimension and heterogeneity can potentially provide suggestive information that could
lead to the development and implementation of more effective transportation demand
management policies (Mannering, Murakami, and Kim, 1994).

There has been a recent proliferation of activity-based studies that have sought to
include time dimension and individual diversity. However, the absence of one universal
theory that would be acceptable to everyone is a major reason for the lack of planning
applications of activity-based analysis. Another reason for a low acceptance of activity-
based approaches in the transportation field is its fragmental development. However,
without doubt, existing research on activity-based travel modeling has provided important
directions for achieving the goal of applied forecasting.

In this vein, two fundamental attempts are sought to further promote the case of

activity-based travel behavior models:



- o Fragmentary devotions to a sound methodological foundation focusing on state

dependence and heterogeneity.
e Provide some empirical evidence relating to the temporal stability of activity-
based models. To achieve this, the time stability of model parameters is tested

by comparing two survey "waves" separated by one year.

From these view points, the objectives of the thesis research are threefold as follows:

e Provide a methodology which will help describe, explain, and forecast the
allocation of all-day activities classified by workers/non-workers in the time
dimension.

e Explore the role that state dependence and heterogeneity play in models of
activity behavior by using transportation panel data; specifically models of
home-stay duration. In the other models, no unobserved heterogeneity is
assumed so that only the role of state dependence can be explored.

e Provide some empirical evidence relating to the temporal stability of activity-
based models. To achieve this, the time stability of model parameters is tested

by comparing two survey "waves" separated by one year.

II. ALL-DAY BEHAVIORAL MODEL FORMULATION

The modeling system is developed for a traveler who is making at least one trip
each day in two consecutive days. There are three conceptual frameworks of trip
generating activity involvement for nonwork, pre-work and post-work respectively.
Figures 2.1-2.3 represents travelers’ all-day activity patterns and models needed at each
stage. All-day activity of workers can be splitted into pre-work, while-work, and post-
work activity due to significant differences in activity patterns. However, while-work

activities are out of the scope of this study and left for further research.
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1. Activity or No-Activity Choice in Worker Model.

The traveler's choice of pursuing an activity or staying home or going directly
home/to a work place will be modeled by the standard binary logit model. The linear

indirect utility function provided by each alternative is,

Viit = Boi + XiB1i + NWyBo; + HByB3; + €y 2.1)

where V) is the utility provided to traveler k by alternative i at time t, Xy is a vector of
traveler k's socioeconomic variables, NWy; is a vector of traffic congestion/network
specific characteristics at time t, HBy; is a vector of habitual behavior that includes

previous activities pursued.
2. Nested Activity Type/Frequency of Trip-Chain Stops Choice Model

Modeling an individual's trip activity-type choice is also fundamental to dynamic
transportation modeling because the type of activity chosen impacts the duration of
activity involvement, destination choice, travel mode choice, and travel time and so on.

Using a standard utility maximizing approach, the mean indirect utility can be
defined as in equation (2.1) and the generalized extreme value assumption of ggijt
produces a nested logit model structure (McFadden, 1981) with the lower nest being the
choice of the number of trip-chain stops (two, three or four or more) and the upper nest
being the activity type choice.

In equation form, the model structure is:

exP(ijt + Ppcln ZCXP(cht))

ces,
P, = J (2.2)
kit 2, exp(Vy + dacln > exp(¥ia))
lel deS,



- where Pyjt is the probability of individual k selecting alternative j (i.e. single-stop

shopping, free-time, personal business, visit/appointment, or activity chain), Vit is the
‘indirect utility for individual k derived from alternative j, ¢, is an estimable coefficient
defined only for the activity-chain alternative, L is the set of activity-type choices

including j, S is the set of trip-chain stop choices available for activity-type I, and

Zexp(l/](dt) is the denominator (inclusive value) of the number of stops choice model
des,

specified from,

exp(V,_.)
B = Pt (2.3)
Zexp(det)
d €S,

where Pypyt is the probability of individual k, who is pursuing activity type | choosing
number of stops alternative n from the set of alternatives S, and Vip¢ is the indirect

utility derived by individual k from choice n at time t.
3. Mode Choice Model

In this section, non-traditional mode choice models, which do not include
alternative specific variables such as travel time and travel cost, are presented.

Two different sets of choice alternatives are modeled for commuting modes
without an activity involvement on the way and the travel mode to/from an activity
involvement. Note that in the case of an activity involvement, alternatives of mode choice
are defined not for single trips but for whole trips in an activity involvement and thus
different modes to and from an activity include two possible cases: physically different
modes such as bus and auto, and occupancy differences or driver/rider changes such as
SOV and carpool driver/rider. Rarely is the first case observed in practice, so the latter
case is defined as mix of SOV and car/vanpool alternatives (change of driver/rider is also

rare).



1) Mode to/from Activity Choice Model

Since travel demand is a derived demand, the activity chosen impacts travel
characteristics such as travel mode and travel time. However, it is also possible that the
choice of travel mode is endogenous with the chosen activity, because the kinds of
activities pursued are restricted by the set of available travel modes. Here, it is assumed
that even the decision of travel mode is affected by the results of a long-term process, the
decision can be contemporaneous with the decision of a current activity type. As such,
activity indicator variables are replaced by the expected probabilities of activity type
choices to overcome the possible endogeniety problem (see Dubin and MacFadden, 1984;
Mannering and Winston, 1985; Hamed and Mannering, 1993).

The assumption here is that a traveler is likely to choose a travel mode providing
the maximum utility. Consider a function that defines the linear indirect utility that each

traveler, k, drives from the mode choice:

Vimt = Boi + XiB1i + NWiBo; + HByBs3; + E[ATi1B4; + E[DTiel Bsi + et (2.4)

where Vi, is the utility provided to traveler k by travel mode m at time t, ATy, is a
vector of indicator variables denoting the activity type for traveler k at time t and this is
replaced by its expected values which is the vector of probabilities calculated from the
activity type choice equation (2.2), DTy, is the travel distance to/from an activity
calculated from minimum-path network and this is also replaced by values instrumented
by all exogenous values due to its endogenity. This gives rise to standard multinomial

logit model as defined in equation (2.3).

2) Mode to Work and Mode from Work without Activity Choice Model

Commuting travel modes to work and from work, without an activity on the way,

are defined as SOV, car/vanpool driver, car/vanpool rider, bus, and park and ride. Unlike
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activity trips, a considerable proportion of travelers use bus and park and ride modes

(10% and 5% respectively) in the Puget Sound region.
The assumption here is the same as before in that travelers are likely to choose the
travel mode providing the highest utility. Hence, the linear indirect utility function can be

defined as equation (2.4) except for activity type indicator variables:

*

V it = Boi + XiB1i + NWyBy; + HByB3; + E[DISTi] Bsi + & e @.5)

4. Frequency of Home-Activity-Home Trip in Pre-Work and Frequency of
Four or More Trip-Chain Stops Model

One would expect the stops of a trip-chain to be some function of the utility that a
individual traveler drives from chaining several trips as well as a random fluctuation in
traffic congestion resulting from the occurrence of accidents and other disruptive
incidents (Mannering and Hamed, 1990). With the independent randomness assumption

of each trip-chain, the probability of traveler i having a n; stops in trip-chain is,

e—xi }\,':'

P(n)) = (2.6)

where A; is the Poisson parameter for traveler i. The Poisson parameter specification is,

log(%;)=ZiB, Z;=(1, X;, NW;, HB) 2.7)

where Z; is a vector of regressors, in which each column vectors are defined as before.

B is a vector of estimable parameters.

Since the model for the frequency of home-activity-home in pre-work is
formulated with workers who make at least one home-based trip (HAH), the sample takes
values strictly above zero. Thus the sample data is truncated at zero. Also, the model for

the frequency of four or more stops in a chain has a truncation point of three.



With truncation at a value C, the distribution of n; applies only to values above C.

Thus,

(e™N)/n,!

Prob[n; | n; >C] =
oblmy [0 >Cl = b, > €

for n; = C+1,C+2, ... (2.8)

5. Travel Time Model

7.6.1 Model of Travel Time From Home To Work and From Work To Home
Without Activity

Based on the assumption of a traveler's ability controlling over travel time, a

continuous linear travel time model (OLS) is defined as,

TTi = Bo + XiiB1 + NWiaB2 + HBy(B3 + E[DT]Bs + e (2.9)

where TTy, is the travel time from home to work or from work to home without an
activity for traveler k at time t, &y is an error term assumed to be normally distributed,
and the other variables and coefficients are defined as before.

When the selectivity bias is corrected (i.e. using the conditional value of travel

time), Equation 2.9 becomes,

E[TTy | No-activity] = B+ Xy B1 + NWieBs + HByB3 + E[DTirlBg
+E[MDyq] Bs+ E[& | No-activity] + nyg (2.10)

where E[TTy | No-activity] is the conditional expectation of travel time given the no-
activity alternative, MDy is a vector of indicator variables denoting travel modes for
traveler k at time t and this is replaced by its expected values which is the vector of

probabilities calculated from the mode choice equation (2.5), E[€y; | No-activity] is the



conditional expectation of the error term given the no-activity choice, and ny is a

normally distributed error term.
As shown by Hay (1980) and Dubin and McFadden (1984), the closed form of the

selectivity bias correction term for the no-activity choice is defined as,

E[£y; | No-activity] = - (V66” /) ppo-activity [(1-PpIn(1-Pye) / Py + InPyg] - (2.11)

where & is the variance of £ in the entire population (not conditioned on the no-activity
choice), Pro-activity 1S the correlation of &y with the unobserved utility associated with the
no-activity choice, and Py, is the probability of traveler k selecting the no-activity choice

at time t. Entering this into Equation 2.10 gives,

E[TTyt | No-activity] = Bo+ X By + NWyiBz + HByB3 + E[DT(1B4
+ E[MDkt] BS + SBkt Y no-activity + Nkt 2. 12)

where SBy, is the selectivity correction term calculated as [(1-PiIn(1-Pye) / Py + InPy]

and ¥ no-activity iS the coefficient of the selectivity correction term, which equals - (v 66 /

TC) Prno-activity.

2) Model of Simultaneous Travel Time To/From Activity and Activity Duration

Intuitively, the travel time to and from the selected activity and the duration of
that activity are interrelated; that is, travelers may naturally be willing to accept longer
travel times to activities requiring a longer duration and vice versa. In addition to the
assumption of the interrelationship between travel time and activity duration,
asymmetrical travel times to and from an activity are assumed. As a result, the

simultaneous equations structure can be formulated as,



TTlyg = 0ty + 0 T2 + apADURy + Zyg 03 + 8 16 (2.13)

TT2y; =B + B1TT1y; + BoADURyy + Zyy B3 + 8 oy (2.14)

ADURy =75 + 11 TTl + ¥ TT24 + Zyy v3 + 8 31 (2.15)

Zy; = ( Xyt NWyy HBy ATy MDyy)

where TT1y; and TT2y, are travel times to and from an activity by traveler k in minutes
respectively, ADURy, is activity duration in minutes and Z; is a vector of subvectors
defined as before, and & i, & 5 and & 3 are error components allowing
contemporaneous correlations .

As was the case with the travel time model from home to work or work to home,
selectivity bias is present. It results from the facts that the travel time to and from the
activity and the duration of the activity are only observed for the activity type and the
travel mode that have been selected by the traveler. Thus, ATy; and MDy, are replaced by
their expected probabilities (i.e. calculated from the activity type choice and the mode

choice models respectively).

6. Home-Stay Duration Model

Home-stay duration is defined as the time spent at home between out-of-home trip
generating activities. The duration of home-stay is extremely important in determining
the timing of discretionary activities (e.g. shopping, free-time, etc.) which effectively end
a home-stay. In this respect, n lengths of home-stays define the (n-1) frequencies of
activity involvement.

In this study, the time-observation unit is one day (24 hrs), beginning at 12:01 am
and ending at 12:00 midnight. Thus, all travelers who are home at midnight, will have
left- or right-censored home-stay duration, and this censoring must be accounted for in

any chosen econometric modeling procedure.



In terms of modeling home-stay duration, the use of hazard functions approach

has been shown to be appropriate (Hamed and Mannering, 1993). This approach uses the
- hazard rate, (defined in this context as the rate at which home-stay durations are ending at
some time t, given that the traveler has been at home until time t), as a basis for modeling

home-stay duration. Mathematically, the hazard function is defined as,

f@)
h(t) = 2.16
® - FO)] (2.16)

where, t is a realization of continuous non-negative random variable T representing
home-stay duration, and f(t) and F(t) are probability density and distribution functions of
home-stay duration, respectively. Then the survival function S(t) is defined as,

S(t) = Prob [T>t] = 1 - F(t) (2.17)

Using the hazard function as a basis, the proportional hazard formulation is,

h(t|Z) = ho(t) exp(Zp) (2.18)
where h(t|Z) is the hazard conditioned on covariate vector Z.

When home-stay duration T is a Weibull-distributed survival random variable
with parameters A>0 and P>0, a corresponding hazard function,

ho(t) = AP (At)P-1 (2.19)

gives the proportional hazards model (from Equation 2.30),

h(t|Z) = AP (A)P-1 exp(-BZ) (2.20)

_.39_



The other types of state dependence, "occurrence dependence" and "lagged

duration dependence" must be handled explicitly in the model by including appropriate
variables in the covariate vector Z. Complications resulting from this inclusion will be

discussed in a later section.
7. Departure Time Model

A non-worker is assumed to repeat home-stays and activity involvements until
being censored at midnight and so the departure time of a non-worker is defined as the
length of the first home-stay from the previous midnight. This length was modeled by
OLS as such,

DTy = B, + XkB1 + NW B, + HBy B3 +Ci (2.21)

where DT}, is the departure time of the first activity involvement for non-worker k, HBy
includes lagged dependent values (i.e. previous-day departure time) and previous-day
activity/travel habits, £ is an error term assumed to be normally distributed, and the
other variables and coefficients are defined as before.

The definition of pre-work departure time is the same as nonwork, but it is noted
that applying the non-workers’ model to the pre-work departure time may produce a
operational problem, in which the scheduled work-arrival time calculated from the
estimated model system can pass far over the scheduled work-start time. It is a practical
concern. Hence, the pre-work departure time model will employ the Mannering, Abu-
Eisheh, and Anadottir (1990)° approach which calculates the departure time back-ward

from the work-start time. The model is,

DTy = WST - SDy - O TT, - Y. ADUR, - ) HDUR, (2.22)
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where DTy is the pre-work departure time for worker k, WSTy is the work start time for

workers with fixed work-schedules and is the preferred arrival time for workers without

-fixed work-schedules, SDy_ is the schedule delay, defined as the amount of time between

scheduled work start time and actual arrival time, z TT, is the summation of travel times
before work, Z:ADURk is, if any, the summation of activity times undertaken before

work, and ZHDURk is, if it is a home-based trip, the summation of home-stays before

work.

ITII. STATE DEPENDENCE AND HETEROGENEITY

There is important information provided in panel data with regard to previous
activity involvement and duration, that is potentially a good predictor of current behavior.
In considering state dependence in duration modeling, three types of state dependence
arise (see Heckman and Borjas (1980) for general discussions of state dependence types).
The first type of state dependence is "duration dependence". This type of dependence
focuses on the conditional probability of a duration endihg given that it has lasted some
known time. The second type, termed the "occurrence dependence", captures the effect
that the number of previous involvements in certain behavior has on current behavior.
The third type of state dependence is "lagged duration dependence”, and accounts for the
possibility that the duration of previous activities is a good indicator of the duration or
occurrence of the current activity. This type of state dependence could uncover important
habitual behavior. In the case of a logit model, only occurrence dependence and lagged
duration dependence can be applied because the dependent variable is not a duration but a
discrete choice.

Heterogeneity in activity behavior models is an outgrowth of the differences that
remain among travelers' nuisance distributions after the effects of observable

characteristics (e.g. socioeconomic characteristics, etc.) have been accounted for.
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Heterogeneity produces the possibility that two travelers with identical observable

characteristics may still have different activity responses. A natural solution to possible
heterogeneity problems is to estimate separate models for each traveler, but this implies
an unrealistic data burden. Thus some formal econometric correction is required.

With these general definitions of state dependence and heterogeneity, an
appropriate econometric modeling structure can be formalized. A common correction for
heterogeneity in duration models allows some parameters to be the same for all travelers
but lets a single parameter vary across households to account for heterogeneity. If we
define a random variable v to account for possible population heterogeneity, we can write

a base-line survivor function (corresponding to hy(t)),
So(tlv) = exp[-v(At)P] (3.1)

It is assumed that v is Gamma distributed with parameters k>0 and c>0. To operationalize
the Gamma heterogeneity component of the model, it is assumed that the model has a
constant term and hence no generality is lost by constraining the mean of v to be 1.
Therefore, the expected value of v is one (i.e. E[v]=c/k=1) implying k=c. Then it follows

that,

ho(®) = [So()1® AP(AHP-1 (32)
Where AP(At)P-1 is the Weibull hazard. Since the variance of v is 1/k with k=c, 6=0
corresponds to the Weibull model with a homogeneous survival distribution. The further
0 is from zero, the greater the effect of heterogeneity in the model.

The corresponding hazard, with covariates, is,

h(tZ) = [S(|Z)]® AP (\)P-1 exp(-BZ) (3.3)



Accounting for possible heterogeneity by assuming a Gamma distribution raises a

number of important questions. First and foremost is whether or not the model (and the
estimation process) will be able to distinguish heterogeneity from state dependence.
Second, the Gamma heterogeneity model used herein handles pure heterogeneity, but
does not explicitly account for possible state-dependent heterogeneity because it can not
be as easily distinguished from the true state-dependent effects. To determine whether or
not true state dependence is being captured, econometric tests must be conducted. The
most common test is to instrument the state variable(s) (e.g. regressing it against variables
known to be exogenous) and estimate the duration model with instrumented values. The
significance of the coefficients associated with these instrumented values is an indication

of the existence of true state dependence

IV. ESTIMATION RESULTS OF ALL-DAY BEHAVIORAL MODEL

The Puget Sound Transportation Panel (PSTP) was the source of the activity data
used in this study. The PSTP is based on two-day travel diaries administered to all
members of the sampled households, and includes the four counties of the Seattle-
Tacoma metropolitan area. The panel has two waves; one wave administered in the fall
of 1989 and consisted of 1,713 households; the second wave administered in the fall of

1990.

1. State dependence and Heterogeneity with home-stay duration model

As discussed earlier, the significance of occurrence dependence, which implies
lagged duration dependence (because the higher number of home-stays means shorter
average home-stay duration), in home-stay duration models may be not a result of true
state dependence, but instead an outgrowth of persistent unobservables ( see Heckman

and Borjas (1980) for a detailed discussion). To test for this, all state variables are
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average home-stay duration), in home-stay duration models may be not a result of true
state dependence, but instead an outgrowth of persistent unobservables ( see Heckman
and Borjas (1980) for a detailed discussion). To test for this, all state variables are
instrumented by regressing actual values against exogenous variables and by using the
regression-predicted values in the model estimation.

The results of this test are shown in Table 4.1 for non-workers and Table 4.2 for
workers. From these two tables, it is shown that, except for the wave 1 non-worker
model, in which their instrumented state effect is marginally significant along with slight
shifts of coefficient magnitude, all other state effects are statistically insignificant,
indicating that the state coefficients are not capturing true state dependence. This implies
that true state effects may not exist or at least may be correlated with error components in
home-stay duration models. This is because, although the Gamma heterogeneity specified
in the models captures persistent unobservables, there may be unobservables which are
not captured and correlated with state variables. That is, these state variables may be
actually capturing a state dependent heterogeneity that is not accounted for by the Gamma

heterogeneity variable 0.

2. Temporal Stability

Given the model structures proposed in the preceding chapter, the stability of
coefficients over the two time periods (separated by one year) can be tested using a
likelihood ratio (LR) test for models estimated by maximum likelihood method, and
using a Chow test for OLS models.

First, for the maximum likelihood models, a chi-squared statistic that measures the
probability of coefficient stability over time, where the null hypothesis is that two sets of

coefficients are equal is,

X?=-2 EpooL - £ w1 -£ w2) 4.1)
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Table 4.1. Test of state dependence in home-stay duration model by instrumented variables
(non-worker), t-statistics in parentheses

" Variable™ Wave 1 Wave2
estimated estimated
coefficients coefficients
12.412 (10.660) 11.221 ( 15.219)

Constant

Oold agé dummy (1 if aged > 57)
Number of children 0-17 years
Household size

Log of annual household income in $1K
Friday dummy (1 if Friday, 0 otherwise)

PM peak arrival dummy
(1 if arrived at home 5-6 PM, 0 otherwise)

Time budget in hours

“Shopping” activity before getting home dummy
(1 if shopping pursued before getting home, 0 otherwise)

“Personal” activity before getting home dummy
(1 if personal pursued before getting home, 0 otherwise)

“Free” activity before getting home dummy
(1 if free pursued before getting home, 0 otherwise)

“Chain” activity before getting home dummy
(1 if chain pursued before getting home, 0 otherwise)

“Car/Vanpool ride” arrival mode dummy (1 if arrived at
home by Car/Vanpool ride mode, 0 otherwise)

“Bus” arrival mode dummy
(1 if arrived at home by Bus mode, 0 otherwise)

P (Weibull parameter)
0 (heterogeneity)

Instrumented previous day total number of home-stays

0.505 ( 2.570)
-0.065 ( -0.798)

-0.528 (-3.038)
-0.404 ( -2.394)
-1.054 ( -4.033)

-0.243 (-7.875)
-0.283 (-1.305)

-0.426 ( -2.105)

0.336 ( 1.485)

0.948 ( 1.074)

0.836 ( 14.273)
0.883 ( 3.041)

-0.457 ( -1.483)

-0.284 (-4.985)
-0.339 (-2.109)

-0.273 (-9.267)

0.429 ( 1.392)

0.256 ( 1.612)

2.222 ( 2.576)

0.831 ( 12.286)
1.056 ( 3.147)

0.0008 ( 0.422)

Log-likelihood at zero
Log-likelihood at convergence

Number of observations
-2

p

-1811.52
-1332.53
1159
0.261

-1746.12
-1321.46
1091
0.240

* Dependent variable is log of home-stay duration in minutes.
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Table 4.2. Test of state dependence in home-stay duration model by instrumented variables
(worker), t-statistics in parentheses

Variable* Wave 1 Wave 2
estimated estimated
coefficients coefficients
Constant 9356 ( 8.016) 9.462 (21.749)

Young age dummy (1 if aged < 26)
Number of children 0-17 years

Friday dummy (1 if Friday, 0 otherwise)
PM peak arrival dummy

(1 if arrived at home 4-6 PM, 0 otherwise)

Time budget after work in hours

“Free” activity before getting home dummy
(1 if free pursued before getting home, 0 otherwise)

“Car/Vanpool ride” arrival mode dummy (1 if arrived at
home by Car/Vanpool ride mode, 0 otherwise)

“Bus” arrival mode dummy
(1 if getting home by Bus mode, 0 otherwise)

Home-stay in pre-work dummy
(1 if getting home after activity in pre-work, 0 otherwise)

Home-stay after work without activity dummy
(1 if getting home after work without activity
on the way, 0 otherwise)

P (Weibull parameter)
0 (heterogeneity)

Instrumented previous day total number of home-stays

0.001 ( 1.660)
-0.178 ( -2.294)
-0.275 (-1.702)

-0.796 ( -5.317)

-0.394( -8.388)

0.520 ( 1.642)

0.417 ( 1.713)

-5.796 ( -7.680)

-0.150 ( -0.941)

1.135 ( 12.770)
4.754 ( 6.647)

-0.023 (-0.049)

-0.180 ( -2.683)
-0.674 ( -3.893)

-0.732 ( -4.468)

-0.368 ( -8.520)

1.232 ( 3.871)

-6.610 (-9.464)

-0.341 (-2.163)

1.003 (12.717)
4.411 ( 5.821)

0.0006 ( 0.506)

Log-likelihood at zero
Log-likelihood at convergence

Number of observations
-2

p

-3514.36
-2281.00
2321
0.349

-3507.63
-2242.45
2242
0.359

* Dependent variable is log of home-stay duration in minutes.



with the degrees of freedom = k (number of coefficients), where subscripting POOL

denotes all observations, W1 denotes time period 1 observations, and W2 denotes time
-period 2 observations.

Second, for OLS models, the Chow test proceeds first by running a pooled
regression and two individual regressions to obtain residual sum of squares (RSS) for

each regression. With these results, then apply F-test as follows:

(RSS yo0, — RSS,, — RSS,,,) / k

= 4.2)
(RSSy, +RSSW2)/(NWI + Ny, - k)

with df = (k, Ny,;+N,,,-2k), where N,,; denotes number of wave 1 observations, N2
denotes number of wave 2 observations, and the other subscripts are defined as before. If
the computed F exceeds the critical F, we reject the hypothesis that two regressions are
the same ( i.e. two models are temporally stable).

The results of LR-test and Chow-test are shown in Tables 4.3 and in Table 4.4
respectively. It can be concluded that, although the evidence of temporal stability
/instability is not clear, activity-based models may be inherently unstable or, perhaps
more likely, more extensive diary data is needed (e.g. seven or fourteen day diaries) to
fully capture the cycle of human activity behavior. Clearly additional research on such
temporal stability is warranted.

Other potential reasons for the severe instability in logit models are the
unseparated habitual behavior (i.e. state effects) from unexplained heterogeneity in the
population and the inclusion of unmatched households in both waves due to 19% attrition
replacement in wave 2 (see Murakami and Watterson, 1990,1991). On the other hand, the
practical application may not be impacted by the partial instability of the disaggregate
behavioral models, since total outputs of models in different waves can be stable due to
tradeoffs between positive and negative habitual changes (e.g. when applying an
estimated logit model to different waves, choice probabilities may be similar in spite of

different model specifications). This test is left for further research.

_47_



Table 4.3 Likelihood ratio tests for temporal stability of maximum likelihood estimates

Model Wave 1 specification Wave 2 specification
xz df p-value Xz df  p-value

HAH/no-activity choice(pre-work) 5.54 9 0.785 4.72 7 0.694

HAW/no-activity choice(pre-work) 25.18 10 0.005*  25.06 10 0.005*

WAH/no-activity choice(post-work) 15.80 14 0.326 12.00 12 0.446

Frequency of activity-stops choice 18.24 17 0374 1998 12 0.067

(non-work)

Frequency of activity-stops choice 23.37 15 0.077 2090 12 0.052

(pre-work)

Frequency of activity-stops choice 38.18 14 0.000* 37.68 17 0.000*

(post-work)

Activity type choice (non-work) 16.80 20 0.666  34.20 22 0.047*

Activity type choice (pre-work) 44.64 20  0.001*  33.24 21 0.060

Activity type choice (post-work) 4420 20 0.001*  43.40 22 0.004*

Mode to/from activity choice 41.80 26 0.026* 9.80 27 0999

(non-work)

Mode to/from activity choice 43.16 26 0.019* 34.76 25 0.093

(pre-work)

Mode to/from activity choice 38.00 30 0.150 67.20 39 0.003*

(post-work)

Mode to work without activity 23.60 25 0.543 17.60 23 0.779

choice (pre-work)

Mode to work without activity 42.40 30 0.066 2232 27  0.721

choice (post-work)

Left-truncated Poisson for # HAH 14.24 7  0.047* 7.17 6 0305

(pre-work)

Left-truncated Poisson for 4+ stops 10.43 9 0317 11.20 7  0.130

in trip-chain (non-work)

Left-truncated Poisson for 4+ stops 7.61 9 0.574 6.82 7 0.448

in trip-chain (work)

Home-stay duration (non-work) 24.50 14  0.009* 5.30 10 0.870

Home-stay duration (work) 15.43 13 0.281 10.26 11 0.507

* The null hypothesis that two models are temporally stable in coefficients, can be

rejected at 5% significance level.
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Table 4.4 Chow tests for temporal stability of OLS estimates

- Model

Wave 1 specification

Wave 2 specification

F df  Foos*

Departure time of non-worker

Travel time from home to work
without activity (pre-work)

Travel time from work to home
without activity (post-work)

1301 (7,1426) 2.01

0.705 (14,2937) 1.71

1.570 (12,2405) 1.75

1.128 (8,1425) 1.94

1.360 (152935)  1.67

1.169 (14,2401)  1.71

Foos™* is the critical F-value at 5% significance level.
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Based on the theoretical models of all-day travel behavior developed in preceding

chapters, an operational system of models employing a simulation approach is developed
mainly for an explanatory demonstration of activity/travel behavior process and for
further policy evaluation relating to the travel demand. The system is divided into three
sub-systems: non-work, pre-work, and post-work.

None of these works cover the state dependence (dependence on past experiences)
along with empirical evidence at the system level. Hence, this study seeks to go one step
further in the implementation of activity-based travel demand models by employing a
simulation approach and by integrating a range of methodological issues advanced in the
preceding chapters. In this study, only the conceptual framework for the application of the
model system is presented and so empirical verifications (e.g. simulation) are left for
further research.

Figures 5.1-5.3 illustrate operational structures generating the travel demand of
non-workers and workers (in pre-work and post-work) by using the previously specified
and estimated models.

As a practical concern, using the results of estimated models, each module
computes the amount of time that each traveler has been on the road for traveling and
then aggregates them to obtain total travelers on the road by time, which can be also
classified by other characteristics such as travel mode, activity type, etc. This would
contribute to the ability to develop and analyze demand management policies such as the

flexible work hour effect.

VI. Conclusions and Future Research Directions

1. Conclusions

This study formulated a modeling system that accounted for all-day activity
involvement and travel behavior, which are divided into three main categories of non-
work, pre-work, and post-work. The system includes a set of discrete/continuous models,

hazard-based duration models, and left-truncated poisson models. The role that state
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dependence and heterogeneity play in models of activity/travel behavior was explored in

the context of home-stay duration models. Using data from two-day travel diaries,
collected in 1989 and again in 1990, separate econometric models were estimated for
1989 and 1990, and the temporal stability of these models was statistically evaluated.
Finally, three conceptual operational modeling systems were developed for possible

policy evaluation and further travel demand forecasting.

e The empirical results show the importance of proper econometric specification in

estimating activity-based travel behavior models.

e Habitual behavior was confirmed with highly significant and temporally stable
coefficient estimates in most of the models. This underscores the need for multi-day
travel data. In addition, current-day state effects (i.e. current-day experience

negatively impacts on the same decision) showed consistently stable results.

e The Poisson model along with the nested activity-type/frequency of trip-chain stops
choice model has an important implication in that these models can be a cornerstone
for overcoming the current difficulty in identifying trip-chain patterns. This notion
was supported by the fact that lagged variables were identified and found to be

consistently significant.

e The model of travel times without activities, showed that the selectivity-bias
correction term was significantly different from zero suggesting that the selectivity-
bias of the activity/no-activity choice is clearly present in these models. The
positive sign of selectivity-bias correction term means a negative correlation of the

error term in travel time equation with the utility associated with no-activity choice.
o In the simultaneous travel time and activity duration models, consistent
relationships between dependent and right-hand side dependent variables were

found. In the non-work single-stop model, only the positive one-way impacts of



activity duration on travel time were identified. The pre-work single-stop model -

also had activity duration positively impacting travel time to/from activity.
Conversely, the travel time from the activity decreased the activity duration. The
relationship in the post-work single-stop model is the same as the pre-work single-
stop model, except for the positive impact of expected travel time from the activity
on activity duration. This is because post-work activities are less constrained by
scheduling. In the case of trip-chaining, the sum of travel times and the sum of

activity durations are positively inter-correlated.

In terms of the role that state dependence and heterogeneity play in models of
activity behavior, true state effects may not exist or at least may be correlated with
error components in home-stay duration models. This is because, although the
Gamma heterogeneity specified in these models captures some portion of persistent
unobservables, there may remain unobservables which are not captured and

correlated with state variables.

For temporal stability, likelihood ratio tests were employed for maximum likelihood
estimates and Chow tests for OLS models. At the 5% level of confidence, the results
show that the multinomial logit models for activity-type choice and for activity
involvement mode choice were unstable. In contrast, all of OLS models for
departure time and commute travel time without activity were stable over time. The
other models were inconclusive. Generally, socio-economic variables showed the
most unstable results, traffic congestion/network variables moderately stable results,

and state dependent variables the most stable results.

The proposed three conceptual frameworks, to operationalize the model system,
demonstrate the decision process of activity/travel behavior classified by non-work,
pre-work and post-work respectively. Using the previous estimation results, each
framework can compute travel-related discrete/continuous decisions and thus the

amount of time that each traveler is on the transportation network.
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2. Future Research Directions

The empirical findings and conceptual framework of the activity-based travel
model system presented in this study should provide a valuable methodological starting
point for future activity-based travel-modeling research. In this regard, there are a number
of important directions to follow.

First, the model system developed in this study includes only the time domain,
which may contribute to the overall instability of the estimation results due to omission of
geographic characteristics. With this said, destination choice models, which produce a
dynamic origin/destination table, and route choice models, are warranted. In this case,
zonal attributes can be included in the models.

Second, although the state effects in the home-stay duration model looked
spurious, the use of longer travel diaries and longer panel data could reveal important
state effects. Also, the state effects of the other should be tested with appropriate testing
methods which can account for heterogeneity.

Third, the findings of temporal instability do not suggest that activity-based travel
models are inherently unstable. They do, however, underscore the need for more
extensive data both in terms of the length of the travel observation period (i.e. seven to
fourteen day diaries) and the number of panels waves.

Fourth, another drawback in terms of application of the model system is in the
area of “while-work” activities which is assumed to be constant. To complete an all-day
behavior modeling system, while-work activities should be accounted for.

Fifth, in terms of practical application, the test of whether the partial temporal
instability of the disaggregate behavioral models produce the same system output or not,
is instructive. This could be important because total outputs of models in different waves
can be stable due to tradeoffs between positive and negative habitual changes.

Finally, empirical testing of the three proposed conceptual model systems and
integration of the model system into a complete travel demand forecasting model is

needed.
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