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Soil-Structure Interaction Analysis by Infinite Elements :
Simulation of Forced Vibration and Earthquake Responses
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1. INTRODUCTION

This paper presents a study on soil-structure interaction analysis using dynamic infinite
elements. Axisymmetric dynamic infinite elements, which were developed for modelling the effect of
propagating multi-wave components into the infinite directions by the present authors(1], are
utilized for modelling the far field of the unbounded soil media. Verifications of the present analysis
method using the infinite elements are carried out for a circular rigid plate on a layered half-space
and also for an embedded cylindrical structure subjected to forced excitations. Analysis is also
carried out to simulate the earthquake response of the cylindrical structure during an earthquake
event. The results from the analyses indicate that the present method using the infinite elements
predicts reasonable structural responses compared with the measured responses and the computed
ones by using other computer code.

2. DYNAMIC INFINITE ELEMENTS INCLUDING NODELESS VARIABLES

In this study, the axisymmetric infinite elements, which were developed by the present
authors[ 1], are utilized. They have three nodes placed on the interface between the near and the far
fields as in Figure 1. However, it can include an arbitrary number of wave components in its shape
functions by introducing nodeless variables. The concept of the nodeless variable is similar to the
internal variables in the classical finite element, which are added to include shape functions having
zero values at the nodes but nonzero values inside the element.
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Geometrical Mapping

For analyzing a layered half-space consisting of horizontal layers and a half-space below the
layers as shown in Figure I, two kinds of the axisymmetric infinite elements were developed; i.e.,
horizontal and radiational infinite elements. The mapping of the infinite elements from the local

coordinates (€, M) to the global coordinates (r,z) are defined as:
For horizontal infinite elements,

r=yME L)y, . z=3LMs, W

For radiational infinite elements,
r=¥ME LMy, z=3ME) LNz @

1 =1

.
1
e,

where Lj(n) is a Lagrange polynomial of which value at node j is unity, and M(£) is the mapping
function(= 1+ £ ) for the infinite direction.

Displacement Shape Functions

A typical displacement component in the 7-direction may be expressed as a linear combination
of several wave components as

u(x) =

M=

{%Lj(n) a'y F(x) @)

-
1§

1
where x = (r,z)T ; ay is a generalized parameter associated with the /~th wave component and the

Jj-th Lagrange polynomial; NV is the number of wave components employed, F,"(x) is the function

representing the /-the wave component in the form of ™" or ¢™***"  which satisfies the
Sommerfeld radiation condition. In the previous expression R denotes the radiational distance from

the origin, and £, is the wavenumber of the /-th wave component.
By utilizing the nodal displacement U, and the generalized parameters for nodeless variables

a; (I 2 2), Equation (3) can be rewritten as

; " yg F(x,
w0 = L0 L8y 331 () () - T

j=1 F;" (X,—) 1=2 j=1 FI“(xj) E“(x)} a;;' 4)

From Equation (4), the shape functions for the nodal displacements are

N}‘(x) = Lj(n) %?)— for j=1,2,3 5)

and those for the nodeless variables are

F'(x;) Fr()) for j=3(/-1)+k

6
FA(x,) (k=123 1=23.N) O

Ni(x) = L(n) (K (x) -

-200-



The displacements associated with the nodeless variables in Equation (6) are no longer
restricted to be zero along the interfaces with the neighboring infinite elements. Hence, to preserve
the displacement continuities along the interfaces, the nodeless variables for each wave component
including nonzero displacements along the interface are taken to be equal to those of neighboring
elements. The compatibility condition between the finite and the infinite elements can be also kept, if
the wave function has a constant value on the interface as those for the horizontal infinite element.

The displacement shape function in the 6- and z-direction , N;(x) and N[(x), can be
constructed similarly to the above procedure.

Numerical Integrations

For constructing the element stiffess and mass matrices of a dynamic infinite element, which
includes multi-wave components, it is required to carry out integrations extending to infinity as

Si(8) et Y e M

M=

I=]{

O 8

-
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For a computation efficiently, Equation (7) can be rewritten as

1=33 [ Byt & ®)
=141 b 6,]. +i5,j 6,1. +i5,j
Then, using the Gauss-Laguerre quadrature the integral can be evaluated as
N N M, ~ ~
IEDMONARLA ©)

=121 k=1

where M, is the number of the integration points used, and 3 . and W, are the new integration
point and the corresponding weighting factor[1,2].

3. EXAMPLE ANALYSIS AND DISCUSSIONS

Circular Footing on Elastic Half-Space

For the verification of the present analysis method, impedance functions of rigid circular plates
on an elastic homogeneous half-space and on a layered half-space are computed for the horizontal
and the rocking motions. The soil properties are shown in Figure 1. Wave functions employed for
the formulation are shown in 7able 1. The computed impedance functions for a layered half-space
are compared with the analytical results[3] in Figure 2. The results indicate that the present analysis
using infinite elements gives very good results.

Simulation of Forced Vibration Test

Verification of the present analysis procedure is carried out by using the forced vibration test
data on an embedded cylindrical structure reported in Reference 4, As in Figure 3, horizontal
excitation forces are applied at the top of the structure, and the horizontal velocity at the top is
measured. Then the transfer function for the top displacement is evaluated. Numerical analysis is
carried out using the model in Figure 3. Based on the soil test data, the shear wave velocity of the
far field is approximately taken as 300 m/sec, while that of near field 210 m/sec. Other soil

properties are taken to be same in the near and far fields: the damping ratio(§ ) =6 %, the mass
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density =1.8 ton/m’, and the poisson's ratio =0.211. In the linear analysis, the dynamic shear
moduli of the soil media are taken to those corresponding to small strain. On the other hand, in the
nonlinear analysis, those are assumed to be dependent on the strain. Comparison with the test data
as shown in Figure 4, the linear analysis results are found to be fairly deviated from the measured
one, while the nonlinear results agree fairly well. For the purpose of comparison, another linear
analysis is carried out using the soil properties used in other study[4]. The shear wave velocity is
taken to be 210 m/sec for the near and far field regions. As shown in Figure 4, the present analysis
result is found to be very well compared with those in the study using a computer code HASSI-4,
which is based on the hybrid soil-structure interaction analysis method[5].

Simulation of Earthquake Response

In this example, it is tried to simulate the response of a cylindrical structure (Figure 5) during
an earthquake event with a relatively small amplitude. The structure is the one used in the forced
vibration analysis. Figures 6 and 7 show the time histories of the recorded horizontal ground
accelerations at observation point S1 (Figure 5) and the structural responses at the top. The analysis
model used in the forced vibration analysis as in Figure 3 is also utilized in this example. In the
equation of motion, the effective earthquake forces are expressed in terms of the free field motion at
the interface between the structure and the soil medium[2]. The recorded ground motions at two
observation points (S1 and A1 in Figure 5) near the structure are utilized as two different samples
for the input free field motion.

Since the peak ground acceleration was about 0.005g, the linear analysis is carried out by using
the degraded soil properties: the shear wave velocity in the near and far field regions =275 m/sec
and the damping ratio =2%. Other properties are taken to be the same as those used in the forced
vibration analysis. The computed responses using the recorded ground accelerations at S1 by the
present method are compared with the recorded ones in Figures 6 and 7. The computed responses
by a computer program HASSI-4 [4] are also shown in the figures. The results show that the NS
component of the simulated responses by the present method are found to be in good agreement
with the observed responses, while the EW component is consistently smaller than the observed
ones. However, it is very interesting to notice that the results by the present method agree very well
with those by HASSI-4 code. At the present moment, it is not quite clear why the analysis results
for the EW components are poor, while those for the NS component are excellent. It might be
caused by the different soil properties in two directions, particularly in the far field region. Further
investigations are required to clarify the reasons.
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Table 1. Wave Functions F(x)'s for Homogeneous Half-Space and Layered Half-Space

Wave components Rayleigh Love Shear Compressional
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Figure 1. Circular footing on a layered half-space
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Figure 2. Impedance functions for a layered half-space (o = 0.75, R,/r, =2.0)
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Figure 5. Observation points of seismic motions
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