Fifth IFSA World Congress (1993), 1390-1393

A Fuzzy Controller Chip for Complex
Real-time Applications

Herbert Eichfeld, Thomas Kiinemund

Siemens AG, Corporate Research and Development, Dept. ZFE BT ACM 2,
Otto-Hahn-Ring 6, 8000 Munich 83, Germany

Abstract - An 8b Fuzzy Coprocessor (FC) is presented
that has eight programmable fuzzy algorithms and up to
256 inputs, 64 outputs and 16,384 rules. The 6.4mm? chip
fabricated in 1.0um CMOS technology can be used as a
stand-alone device or as a macrocell for microcontrollers.
Operating at 20MHz crystal frequency, it has a peak
performance of 7.9M rules/s.

Perspectives of future FC generations are also outlined,
including a 12-16b resolution, additional fuzzy set oper-
ations, and optimized inference and defuzzification strat-
egies.

I. INTRODUCTION

The Fuzzy Coprocessor (FC) chip presented in this ar-
ticle supports a host with fuzzy control computing.
Fuzzy Control applies the concepts of Fuzzy Set Theory
to perform a control strategy based on empirical know-
ledge and expressed as a linguistic protocol in terms of
if-then rules [1-3]. The fuzzy control algorithms are
usually implemented with software running on standard
hardware. However, if the system under control is com-
plex and demands many control rules, or if it is fast and
demands real-time control, special hardware is required.
All previously introduced fuzzy hardware [4-7] suffers
from a large silicon area. The FC, however, is small
enough to be integrated as an on-chip microcontroller
module. It is of particular interest for automotive and
machine tool applications.

In sections II and III, the main features of the FC are
listed and its operation is described. Architecture and
memory organization are explained in sections IV and
V. Finally, an outline is given of future FC generations.

II. FEATURES
The performance of the FC is given by
t=[(nr-nc+2%+ro+1) tc+thf ] no, (1)

where t is the computation time from initializing the FC
until the output is calculated; nr is the number of if-then
rules. The number of input read cycles nc is a function
of the number of inputs ni:

nc= <ni/4> 2)

with < x > := smallest natural number > x.

This means that the FC performs a 4-input parallel
processing. The resolution of outputs is symbolized by
ro, tc is the period of the system clock, thf the time for
data transfer between host and FC. Finally, no stands for
the number of outputs. The FC computes only one out-
put at the same time. If there is a linguistic protocol with
more than one output, the FC has to compute one after
the other.

The term ro +1 in (1) expresses the time demand for the
division in the defuzzifier. The exponential term of ro
signifies a true runtime integration for inference and de-
fuzzifying.

In order to discuss the intrinsic FC performance, thf has
to be left out of consideration, as it depends on the type
of host applied. With an 8b output resolution ro, a
system clock period tc of 100nsec, no set to one and thf
set to zero, one gets:

t=(nr-nc+ 265) - 100 nsec. 3)

Equation (3) is illustrated in Fig. 1. With 1000 rules and
4 inputs, for instance, the computation of the crisp out-
put takes 126.5usec. This results in a peak performance
of 7.9 million rules per second.

—1390 -



10,000
O ni=13..16
. O
[J ni= 9..12
Unsec A ni= 5.8 o
X ni= 1. 4 o &
1,000 O
C A
O
o A
X
100 o) Ll
3 a %
X
g ¢ &
x K X
10 T T T T — T T T
1 3 10 30 100 300 1,000 3,000 10,000

nr

Fig. 1. Performance t as a function of the number of rules nr
with the number of inputs ni as parameter.

Based on a VHDL description of the digital and all static
logic design and applying logic synthesis, all circuits
were mapped to standard cells in 1.0um CMOS technol-
ogy. The chip area is 6.4mm?2, including the on-chip
RAM. An on-chip ROM stores the application-specific
knowledge base. The crystal frequency can be up to
20MHz.

The FC is characterized by the following features:

- maximal number of inputs 256

- maximal number of outputs 64

- maximal number of rules 16,384

- Knowledge Base Memory (KBM)
internal (max.) 64kB
external (max.) 64kB

- number of fuzzy algorithms 8

- resolution of /O 8b

III. OPERATION

The host processor of the FC may be any microcontrol-
ler that can handle an 8b address/data bus. The first ac-
tion in each control cycle is to address the FC control
register with the start information. Secondly, the FC
expects entry of digitized inputs one by one into its 8b
data register. As soon as the crisp output is computed,
the FC announces this with an IOR flag (Input Output
Requested) in the control register pollable by the host, or
with an interrupt signal. The host finally takes the crisp
output from the FC data register. After that, another con-
trol cycle may start.

In case of more than 4 inputs, the first four are processed
by the FC until it creates another IOR flag to request
more inputs. The FC continues with inference calcula-
tions only after all inputs are sent by the host.

In case of more than 256 rules, a link of two or more
knowledge bases (KB) is made. This offers the advan-
tage that a large number of rules can be processed: link-
ing all 64 KBs results in a maximal rule number of 64 -
256 = 16,384. In addition, the rules can be grouped in
parts of equal numbers of input read cycles nc. Each
group can be defined as a single KB which is linked to
the others. This method of rule grouping allows memory
saving and performance enhancement.

IV. ARCHITECTURE

The functional blocks of the FC are drawn in Fig. 2. The
data for the FC control register as well as the inputs are
driven by the host via the host bus. The start information
and the 8b inputs is sent via the internal data bus to the
KBM interface which handles the communication with
the KBM. There are two possible KBM implemen-
tations: on-chip ROM or off-chip memory devices,
which may be of any type (SRAM, EEPROM,..).

The fuzzifier stores the values of the hit input mem-
bership functions (IMF). In the rule decoder, the lin-
guistic values of the actual inputs are compared with the
if-then rules to determine the active rules which are sub-
sequently evalvated in the rule evaluator: first, the MIN-
operator is applied to compute the fulfillment value of
each active rule. After that, aggregation of the fulfill-



_Fuzzy Coprocessor Chip

1

Clock generator

Clock

KBM

pus T
<I> KBM interface

T, Mareeontoller (g )| Fuzifier
—E )

On-chip ROM

Control

Y
1 Rule decoder
ROM )
bus
Rule evaluator
> with on-chip RAM
'
_I> Inference
Data bus Y
8 Defuzzifier

Fig. 2. Architecture of the Fuzzy Coprocessor

ment values is performed with the MAX operation or
with the Bounded Sum (BSUM) in order to obtain the
weights for each output membership function (OMF).
That is, in case of BSUM all relevant rules contribute to
the respective OMF weights, whereas for MAX only the
maximum of the fulfillment values is taken into account.
As one rule can connect up to 256 inputs, an on-chip
RAM storing intermediate results is needed in the rule
evaluator block.

The OMF from the KBM and their weights from the rule
evaluator are the inputs for the inference unit to calculate
the possibility distribution of the output. This fuzzy out-
put is computed using MAX- or BSUM-operation of the
weighted OMF. Here, BSUM means that the overlap of
adjacent OMFs enters into the fuzzy output, whereas for
MAX it is left out of consideration.

The last step is converting the fuzzy output into a crisp
one. The defuzzification is implemented as a Center of
Gravity (CoG) or a Mean of Maxima (MoM).

Thus, the user can choose between eight hardware-im-
plemented fuzzy algorithms: MAX or BSUM in the rule
evaluator, MAX or BSUM in the inference and CoG or
MoM in the defuzzifier can be combined to eight pro-
gram-selectable alternatives.

V. MEMORY

The KBM stores four types of information: Knowledge
Base Descriptors (KBD), Input Membership Functions

(IMF), Output Membership Functions (OMF) and Sets
of Rules (SR).

The KBDs consist of four 15b words for control infor-
mation and start addresses for IMF, OMF and SR.

The IMF and the OMF are stored in a look-up table in a
format explained in [8]. Thus, every MF shape is pro-
grammable. However, the grade of overlap is set to a
maximum of two. For the IMF, up to seven linguistic
values, for the OMF, up to eight can be defined.

The SRs are if-then rules with a variable number of
AND-connected inputs and one output. Each input is
represented by a number signifying one of its linguistic
values. For more than four inputs, the SRs have to be
split into segments with four inputs.

After each control cycle, the KBM may move between
on-chip and off-chip memory. Thus, the memory size
can be easily extended.

The memory demand m is expressed by

m = 60-nc'no + 15-nr-ncno + 15-(2r-ni + 2ro-no). (4)

The first term stands for the memory demand of the
KBDs, the second for that of the rules and the last for
that of the membership functions. An example of memo-
ry organization can be found in [9].

Memory capacity can be saved in all cases where there
are equal IMFs or OMFs or SRs in different KBs
because the KBD allows memory sharing of different
information. Another way of using this feature is to
adapt the KB efficiently to slowly varying system char-

—1392—



acteristics if only parts of a KB are affected. A
"degradation age", for example, which can be evaluated
by the host, also could be used to control the choice of
the appropriate KB.

VI. PERSPECTIVES

For future FC generations, two lines of further develop-
ment have been envisaged: first, an even faster and more
compact 8b design, and second, an extended version
with 12-16b resolution of in/outputs.

A look at (1) shows that for small numbers of inputs ni
and rules nr, the performance is dominated by the term
2ro = 256: the entire output domain is taken into ac-
count, irrespective of values for which the fuzzy output
is zero. To be able to skip these regions not contributing
to the calculation of the crisp output, additional circuits
have been developed. Although all characteristics of a
true runtime integration remain preserved, an accelera-
tion up to a factor of four can be achieved.

On the other side, for large ni and nr, the major part of
the computation time is needed for rule decoding and
evaluation. So far, the antecedent part of the rules means
an AND-operation on fuzzy sets (see V), i.e. expressing,
for example, a NOT-operation results in a comparatively
large number of rules. Therefore, hardware representa-
tions of additional fuzzy set operations would reduce nr
significantly and thereby lead to a relative gain in
performance and memory space strongly increasing with
ni. As an example, for rule bases used in practice and
connecting five to seven inputs with three to five
linguistic values each, an improvement by at least a
factor of five could be achieved.

Due to the 64 different KBs and by clever programming
the above-described 8b FC, a limited number of inputs
with higher resolution can also be processed, e.g. two
inputs with 11b resolution each. In addition to that, by
employing several chips in a parallel or hierarchical set-
up, an even higher resolution and/or input number could
be handled. But, even if the performance were to remain
reasonable, such solutions will be of interest only for a
limited number of applications because of the exponen-
tially increasing silicon demand.

From (4) it is obvious that in high resolution FCs it is no
longer possible to process membership functions of arbi-
trary contour: a restriction is imperative, €.g. to a trape-
zoidal shape. This was done in [10] where a special-pur-
pose fuzzy microprocessor is described.

However, additional effort will be necessary to arrive at
a sufficiently fast 12-16b FC which is also small enough
to be integrated at low cost on a standard microcontrol-
ler. This means an area-optimized IMF calculation and a
pipelined operation of fuzzifying, rule decoding and rule
evaluation. A method for screening of not-active rules
would also be useful which allows for significant per-
formance enhancement in case of large ni and nr. Fi-
nally, highly elaborate defuzzification strategies are
needed, consisting of preprocessing the OMF as far as
possible in order to avoid the performance penalty of an
actually performed high resolution runtime integration
without destroying its information content.

ACKNOWLEDGEMENT

The authors would like to thank M. Klimke, S. Lewalter,
J. Nolles and their colleagues of the Semiconductor
Group for their fruitful and efficient cooperation. They
also wish to thank D. Schmitt-Landsiedel and H. Herbst
for encouragement and support throughout the work.

REFERENCES

(1] L.A. Zadeh,"Fuzzy Sets", Informat. Control, vol.8, pp. 338-53, 1965.
[2] E. H. Mamdani, S. Assilian, "A Case Study On The Application Of
Fuzzy Set Theory To Automatic Conirol”, Proc. IFAC Stochastic Con-
trol Symp., Budapest 1974, pp. 643-9.

[3] C.C. Lee,"Fuzzy Logic in Control Systems: Fuzzy Logic Controller”,
IEEE Trans. Syst. Man Cybern., vol. SMC-20, no. 2, March/April
1990,"- Part 1", pp. 404 - 18,"- Part II", pp. 419 - 35.

[4] T. Yamakawa, "High-Speed Fuzzy Controller Hardware System: The
Mega-FIPS Machine", Information Sciences 45, 113 - 128 (1988).

[5} R. J. Corder, "A High-Speed Fuzzy Processor”, Proc. of the 3rd IFSA
World Congress1989, pp. 379 - 81.

[6] H. Watanabe et al., "A VLSI Fuzzy Logic Controller with Reconfig-
urable, Cascadable Architecture”, IEEE J. Solid-State Circuits, vol. SC-
25, No. 2, April 1990, pp. 376-82.

{71 H. Tkeda et al., "A Fuzzy Inference Coprocessor Using a Flexible
Active-Rule-Driven Architecture”, Proc. of the 1st Int. Conf. on Fuzzy
Systems FUZZ-IEEE 92, pp. 537 - 44.

[8] H. Eichfeld et al., "Architecture of a CMOS Fuzzy Logic Controller
with optimized memory organization and operator design”, Proc. of the
1st Int. Conf. on Fuzzy Systems FUZZ-IEEE 92, pp. 1317 - 23.

[9] H. Eichfetd, T. Kiinemund, M. Klimke, "An 8b Fuzzy Coprocessor
for Fuzzy Contol", ISSCC Dig. Tech. Pap., Feb.1993, pp. 180-181.

[10] K. Nakamura et. al., "A 12b Resolution 200 kFLIPS Fuzzy Infer-
ence Processor”, ISSCC Dig. Tech. Pap., Feb.1993, pp 182-183.

—1393—



