Fifth IFSA World Congress (1993), 1386-1389

Architecture of a PDM VLSI Fuzzy Logic Controller with
an Explicit Rule Base

Ansgar P. Ungering, K. Goser

University of Dortmund, LS-BE, Emil-Figge-Str. 68, 4600 Dortmund, Germany
Fax: + 49 231 7554450 E-mail : ungering@luzi.e-technik uni-dortmund.de

Abstract: We are describing the architecture of a fuzzy logic
controller using pulse-width-modulation (PDM) technique
and a pipeline structure. Features of this controller are: A new
architecture for the inference unit, reduced chip area and less
I/O-pins. Additionally we present two different rule-bases:
one hardwired with reduced chip-area and the other
programmable for prototyping. Also an architecture of a

parallel minimum-gate is shown.

Introduction

In the recert years there has been an increasing interest in
methods for realizing efficient digital fuzzy controller hard-
ware suitable for integration /1,2,3/. First implementations /1/
show a high flexibility but need a large amount of chip area.
New architectures proposed in /2,3,4/ restrict the degree of
overlap of the membership functions (MFs) and lead to a
reduced amcunt of chip area. This paper presents an extension
of these methods.

A typical fuzzy hardware controller consists of the following
building blocks:

1. Fuzzifier unit

2. Rule-base

3. Inference unit

4. Defuzzification unit

In this communication, we will show that the first three of the
building blocks mentioned above can be implemented with
reduced hardware requirement but without reducing the speed
of operation. This is achieved if the input and output signals
are pulse-width-modulated (PDM) and if the internal
operation is also based on PDM-signals. In this case the rule-
base is hardwired. For prototyping we also present a
programmable rule-base.

Fuzzy Operations with PDM-Signals

The described controller uses only the minimum- (MIN) and
maximum- (MAX) operators. Using AND-gates and OR-
gates it is very easy to calculate the MIN and MAX of PDM-
signals /5,6/. The hardware requirement is very low. Since it is
not very difficult to build a voltage or current to PDM
converter, a fuzzy controller using PDM signals usually
requires less I/O-pins and less chip area than other methods.

Analysis of the MIN/MAX-Algorithm

The algorithm is based on minimum- and maximum-
operations. The "crisp" output value will be calculated using
the center of gravity (COG) method. The basic principle of
the wellknown algorithm is depicted in Fig. 1. The calculation
of the "THEN-PART" (a-cut and combining the MFs Cx’ to
one resulting output function C*) usually takes N time steps.
N is equal to the x-resolution of the MFs. Therefore, if the x-
resolution of the MFs is 256 (8-bit), N=256 time steps are re-
quired. This part of the controller limits the speed of
operation,

oA 3| B’i ;

if A° is Al and
A ATA2 i .
! wor /M " @EBIV:‘ .
/AN zh
[I
S
i,,_,;’ L ey — ,,,,A"’,v, i
if A" is AZ and if B' is B2 then

Fig. 1. Principle fuzzy controller algorithm

Clearly, using pipelining, all other parts of the controller do
not reduce the speed of operation of the complete system, if
their internal speed of operation does not exceed this limit.

Architecture

A Fuzzy-Controller system consist of the following blocks:

1. Fuzzifier

2. Rule base

3. Output MF-Generator
4. Defuzzifier

5. Control unit

Our architecture uses a 4-stage-pipeline which consists of the
following stages: Fuzzifier, Rule base, Output-MF-Generator
and Defuzzifier.

In the following paragraphs these blocks will be described.
The resolution is 3-bit, so that one main clock cycle takes 256
system clock cycles. Every stage of the pipeline requires one
main clock cycle.

Implementatior: of the Controller Blocks

1. Storing and reconstructing membership functions

It is well known, that most fuzzy applications require only a
limited number of MFs with an overlap degree of 2.
Therefore, we restrict the number of MFs to 8 for each input
and to 8 for each output. It should be noted that these
restrictions are not disturbing. They lead, however, to simple
circuits. The MFs (see Fig. 2.a) are stored by the memory
blocks "even" and "odd" in the following manner /3,4/;

First, the MFs are numbered starting with the leftmost MF
(MFO0). The even MFs will be stored in the "even" memory
block, all odd MFs will be stored in the "odd" memory block.
Since the overlap degree is 2 none of the MFs overlap each
other in each memory block.! In order to reduce the amount
of the required RAM, the MFs are stored in a compressed
form (Fig. 2.b, 2.¢c): The first memory location k=0 contains
the start value mg. Each of the following memory locations
0 <k <kmax contains first the point on the x-axis x where
the next change of the slope occurs and second the slope my.
Obviously triangular and trapezoidal MFs can be stored in a
very compact form. The storage of MFs with arbitrary shapes
is also possible.

14\Mru MF1 MF2 MF3
a)
A+ N
4] Xemox
@ MF even
my ma k|l x |m
1
mz msg 0.] — {mpg
b) mz MF 1. xq | my
even
MFO \ maf MF2 2.\ xz | M2
mo 3. x3 |m3
m3 mas z .
[y])E:);2 XVJ'X‘ X5 X‘s X7 Xmax *
MF odd
mk k| x |m
14 .
mE 0.l — |mjp
MF 1. %y [my
c my mi odd P ,
) ™ w1 MF3 \m¥ 2.0 x3 1m3
3. x5 imi
mbl mi | m .
! T3 TSRV S L .
o x4 Xz X3 X4 X5 X§ X7 Xmox

Fig. 2. Compressed storing of the MFs

1 1f the overlap degree q is greater than 2, we need q memory blocks.

For 8 membership functions (see Fig. 4) we need no more
than 56 bytes of memory (8-bit resolution).

The reconstruction of the original MFs from the stored
information can be done by the following procedure (Fig. 3.):
At x=0, the start value mq will be read from address k=0 of
the slope memory and stored into the adder. During the next
system clock cycle (x=1), the contents of memory location
k=1, m; (slope memory) and x; (position memory), will be
read. During each of the subsequent system clock cycles, m;
is added to the contents of the adder as long as x<xj. Now,
the contents of the memory location k=2, my and x5, will be
read. Again, as long as x<xp, my is added at each system
clock cycle to the contents of the adder. This procedure will
be repeated for x<xyax-

(PosMon B Compnro?or
I memory r j

§
Poslhon— Controi~
47L_

counter signals
Y 15
‘ r /|
. e | .__M_._7L__,_-a Bit Latch
8 Address~] e, (s
T counter e -) 8
—— - - ¢
i 8 N
) L 8 8
P b > Y =H{x)
b f/ Adder

— - — 8 o~
Slope~ Y 7
memory . L,/ 7

Fig. 3. MF-Generator

2. Fuzzification of PDM-signals

Fig. 4 depicts the architecture of the fuzzifier. In this and the
foliowing figures the latches which separate the pipeline
stages are not included. With each system clock cycle new
MF-values are produced by the MF-Generators. Therefore,
a resolution of 8-bit results in 256 values for each main clock
cycle. The MF-counter generates the numbers h and h+1 of
the MFs which are actually the outputs of the MF-Generators.
In order to save wires, only the number h is delivered. After
the input signal I returns to zero, the corresponding MF-
values and the MF-number h are stored for further processing.
This completes the first stage of the pipeline.

Control~
overn MF ~Generator signals

Output
sven

SR [—
D/POM~ | .
L) Con
i . = ue
A b
; ;1 Counm e

A

8
i D/PDM- l
7 Converter
e W

. [VU S 2 U S S Cantrol—

Fig 4. Fuzzifier for PDM-Signals

The D/PDM converter transforms the stored MF-values into
PDM-signals. This belongs to the second pipeline stage
denoted prior by "rule base". An example is given in Fig. 4.
The duration of the input signal I is 183. The output of the
even MF-Generator delivers a MF-value of 128 since MF 6 is
active. In the odd MF-Generator, MF 5 is active and the
corresponding MF-value is 204. Therefore h=>5 is stored in the
MF-counter.

~1387 -

Ansgar P. Ungering

3. Rule base

We present two different architectures of a rule-base. The first
one uses PDM-signals and is hardwired. So the hardware
requirement is very small and there is a high flexibility. The
second rule-base is programmable. This part of the controller
is the second pipeline stage.

3.1. Hardwired rule-base with PDM-signals

In contrast to some traditional hardware realisations, this
architecture allows the MIN- and MAX-operations on the
fuzzified values without increasing the speed of operation and
the amount of hardware substantially. It is also allowed to
combine rules with the MIN- or MAX-operators. An example
is given in Fig. 5.

3 3
MF=Na.j —7/——— MF-Na., —/——
I S
avan, Nau® GVan Fpil
odd, 3 odd, "
MF—DEMUX MF—DEMUX
Input 1 e Input n
MFO, MF7, MFO, MF7q
jadi —
Rule 1 7 L MIN
Rula 2 fen —gmx
|
I 3 wax}
Rule K 2 MIN

~ PDM/D
jj—v = minimum—gate converter
F

Fig. 5. Architecture of the rule-base using PDM-Signals

1>

maximum—gote

Depending on the value of the MF-number h, the MF-
DEMUX-unit switches the even and the odd signal to the
wires MFO to MF7. If two or more rules using the same
output MF’ (e.g. see Fig. 8: rule 1 and k), the rule with the
highest a-value will be used. This is easily realized using a
wired OR. The MF’-MUX output signals o[are then
converted by the PDM/D converter into digital values o*; and
stored. This is the end of the second pipeline stage.

Obviously the rule base architecture offers flexibility, high
speed operation and small chip area.

3.2. Programmable rule-base

Fig. 6.a. shows a typical rule-base and how to store it. The
architecture of the unit for calculating the rules is shown in
Fig. 6.b. . This unit works sequential and with every clock
cycle one rule will be calculated. Using a resolution of 8 bit
256 rules could be calculated in one main clock cycle. For
most of the applications this is enough.

The “if-part” of the rules steers which wy-value of the MF-
generators is switched to the MIN-gate. For example see Fig.
4. . If the input value is 183, the MFs 5 and 6 are active.
Depending on the number of the subpremisse (stored in the
rule-base memory) ag respectively e is switched to the
MIN-gate if this number is equal to h or h+1. Otherwise
‘zero’ is switched to the MIN-gate. This will be done in
parallel for every input of the MIN-gate. The output value of
the MIN-gate represents the trouth value of the rule. If this
value is greater than the value stored in the corresponding
register (on of RegO - Reg7 which represents the output
MFs), the new value will be stored. After 256 clock cycles the
values of the registers Reg0 - Reg7 will be transferred into
Reg0’- Reg7’ and could be used in the next pipeline stage.

then O is X3 = 001101 .. 011
then Ois X5 = 100010... 101
then Ois X3 = 000111 ... 011

if In1is A1 and in2is B5 ...
if in1 is A4 and In2 is B2 ...
if In1 is A0 and In2 is B7 ...

a)
s 2 2 _l—‘—]
i3 >
SR, T M
3

D Reg0 T Reg0* —>—a§
E Reg2 Reg2® > &3
b‘ Reg4 Reg4® a}
X RagB Ragt* ag

»

3

2

o

>

|

3) Reg! Regt® —)—a;
E Reg3 Reg3' [>— QA3
5 Reg5 Reg5’ -—>—aE
X Reg7 l Rag7’ [>— O
2, Y

MUX
b)

Fig. 6. Programmable rule-base

<Bs
Fig. 7. Parallel MIN-Gate

—1388—

Fig. 7. shows an interesting architecture of a multiple input
MIN-gate e.g. used in our unit for calculating the rules. The
operation speed of this gate is nearly independent on the
number of inputs and it is very easy to expand the number of
inputs. Additionally the hardware requirement is very low. A
prototype of a 2.5um CMOS implementation is shown in fig.
7b. .

4. Inference unit

The new architecture of the inference unit described in this
chapter is basec¢ on the assumption that the degree of overlap
of the membership functions is 2. Again two memory blocks
denoted by odd and even are used for storing the output MFs.
Fig. 8 depicts the architecture for one controller output with
inference unit (third pipeline stage) and defuzzification. The
operation of the MF-Generators are basically the same as

described before. The output values of the rule base a*; (see
Fig. 6) are fed into two 4x8-bit multiplexers, steers by the
number of the active output MF.

The inference for the even MFs will be shown in the
following. On every system clock cycle the MF-Generator
delivers a new value. Depending on the number of the active

output MF the MUX switches the value o*j of this MF* to
the MIN-gate. The MIN-gate limits the values of the MF-
Generator to the output of the MUX. Obviously the output of
this MIN-gate corresponds to the "even" part of the resulting
output function. The output of the "odd"-part is generated in
the same way. The MAX-gate combines the "even"- and the
"odd"-part to one resulting output function.

even MF—Gersrator » "
even

4 5 -
/ A LD&
1t
T e I3 1T 4 1" @ 2 resuiting

function

-
a3 e
a1 AxB-hH L
Mux

(aven}

rule base
2
e

from the
R
=
N
!
M

.
Ay —7 A axa-on Ll
@ —# uux

L o — {add)

odd MF—Ganarator

1 r
\ et ’_)L" Control—
signals.
11 3 I I)
2!

55

"odd”

Fig. 8. Inference unit and Defuzzification

The advantages of the architecture are reduced memory (only
two memory blocks) and a constant operation time not
depending on the number of active rules.

5. Defuzzification

The controller uses the COG method for defuzzification. For
calculating the center of gravity we have used the algorithm
shown in /1/. For an optimal pipeline architecture it was
necessary to integrate the adders for calculation of the counter
and of the denominator in the third pipeline stage. The
division is executed in the last pipeline stage. Because every
stage of the pipeline takes one main clock cycle, we
implemented the devider by an adder to save chip area.

6. Control unit

The control unit steers the pipeline and generates the
following signals:

1. The system clock cycle (input clock dividing by four).

2. The main clock cycle (system clock cycle dividing by the
x-resolution).

3. A power-up reset.

SUMMARY

The use of PDM-signals allows to realize an architecture of a
fuzzy controller with reduced chip area. A prototype of the
controller with two inputs, one output and a resolution of 8-
bit is implemented on FPGAs. We programmed the controller
for an inverted pendulum with 19 rules and 7 MFs for each
input and for the output. This takes less than 850 CLBs of the
used four FPGAs (Xilinx: XC3090-100). This corresponds to
about 10.000 gates. With an input clock of 6 MHz we
achieved 6.000 controller operations per second. Future work
will speed up the controller with an ASIC-realisation. We
expect to increase the operation time by at least 5 times.

ACKNOWLEDGEMENT

The authors would like to thank the VW-Stiftung Hannover
for supporting this work and Anke Goos for their assistence
for preparing this paper.

REFERENCES

/1/ H. Watanabe, W.D. Dettloff and K.E. Yount, "VLSI Fuzzy
Logic Controller with Reconfigurable, Cascadable Architecture,"
[EEE Joumal of Solid-State Circuits, vol. 25, no. 2, pp. 376-382,
April 1990

/2/ H. Eichfeld, M. Lohner and M. Miiller, "Architecture of a Fuzzy
Logic Controller with optimized memory organisation and operator
design,” Int. Conf. on Fuzzy Systems, FUZZ-IEEE 92, San Diego,
March 8-12, 1992, pp. 1317-1323

/3/ Ansgar P. Ungering, Bashar Qubbaj und Karl Goser,
"Geschwindigkeits- und speicheroptimierte VLSI-Architektur fir
Fuzzy-Controller," VDE-Fachtagung: "Technische Anwendungen
von Fuzzy-Systemen", Dortmund, 12./13. November 1992, S. 317-
323

/4/ HN. Teodorescu and T. Yamakawa, "Architectures for Rule-
Chips Number Minimizing in Fuzzy Inference Systems,”
Proceedings of the 2nd International Conference on Fuzzy Logic &
Neural Networks, lizuka, Japan, July 17-22, 1992, pp. 547-550

/5/ Omron Corp, "Programmable fuzzy logical circuit - converts
input signals into pulse signal, with programmable logical circuit
outputting pulse,” patent, PN 103122720 A 910524 DW9127, 1989
/6/ Ansgar P. Ungering, Karsten Thuener, Karl Goser,
"Architecture of a PDM VLSI Fuzzy Logic Controller with
Pipelining and Optimized Chip area” Second IEEE Int. Conf on
Fuzzy Systems, FUZZ-IEEE 93, San Francisco, March 28 - April
1, 1993, pp. 447 - 432

/7/ W.J M. Kickert and E H. Mamdani, "Analysis of a fuzzy logic
controller”, Fuzzy Sets and Systems 1, pp. 29-44, 1977

/8/ L.A. Zadeh "Fuzzy-Logik," IEEE Computer, pp. 83-92, April
1988

/9/H. Surmann, B. Moeller and K. Goser, "A distributing self-
organizing fuzzy rule-based system,” Neuro Nimes 92, november 2-
6, 1992, pp. 187-194

/10/ F. Deffontaines, A. Ungering, V. Tryba and K. Goser, "The
concept of a RISC architecture for combining fuzzy logic and a
Kohonen map on an integrated circuit,” Neuro Nimes 92, november
2-6, 1992, pp. 353-364

—1389—

