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Abstract. Fuzzy mathematics is used to elicit
and evaluate human psychophysical responses in panel
tests. The fundamental instrument used is a bar graph
whose data is then converted to a paired comparison
matrix. From this matrix we use the theory of Perron
and Froebenius to obtain an eigenvalue and eigenvector
which indicates not only the panelist’s comparitive
responses but also the consistency of the responses from
that panelist. Tests were done to evaluate the
procedure.

Introduction. Human perception is a complex
phenomenon which is difficult to quantify with
instruments. For this reason, panels of several or many
people are often used to elicit and aggregate subjective
judgments. Print quality, taste, smell, sound quality of
a stereo system, softness, and grading Olympic divers
and skaters are some examples of situations where
subjective measurements or judgments are paramount.
For lack of better methods to quantify subjective
judgments, it is customary to set up a numerical scale
such as ., 2, 3, 4, 5 or 1, 2, 3, ... , 9, 10 for
characterizing human responses and subjective
judgments with no valid justification except that these
scales are easy to understand and convenient to use.
But human responses and subjective judgments are
psychophysical phenomena that are fuzzy entities and
therefore  difficult to handle by conventional
mathematics and probability theory. The fuzzy
mathematical approach provides a more realistic
insight into understanding and quantifying human

responses.

Approach. The method used to code responses
obtained from panelists is especially important when
one wishes to make decisions concerning properties or

events which are not objectively quantifiable but which

must be evaluated subjectively. The problem of coding

such responses has been addressed from many

.directions. In this paper we propose a technique, based

in fuzzy mathematics, for quantifying and evaluating
subjective responses and then we test our technique in
situations where the properties are also objectively
measurable. By testing our technique in objective
situations, we hope to lend credibility to its use in
purely subjective sitnations. The technique we describe
is a refinement of techniques originally proposed by

Saaty.

Saaty proposes using five adjectives as “response
words™ in subjective panel tests. These words indicate
that two samples are indistinguishable (1) with respect
to a given property or that the difference between them
is slight (3), moderate (3), significant (7}, or extreme
(9). Of course, panelists are permitted to hedge their
bets and cast their ballots between two such
judgments. (2, 4, 6, or 8). Thus Saaty is proposing a 9
point scale for linguistic or subjective judgments. As
Saaty states, this is a good scaie in that it provides
enough shades of meaning without expecting a panelist

to be scrupulous.

After obtaining panel data, the next problem is
the analysis of this data. Aside from the usual
statistical analysis, a technique that has been shown to
be successful in fuzzy or subjective situations is to find
the dominant eigenvalue and associated eigenvector for
the reciprocal matrix of paired comparisons. This
analysis is based on the work of Perron and Froebenius.
If n objects Ay, ..., Ajp are being compared, these are
listed horizontally and vertically to indicate the rows
and columns of a matrix M. If A; is judged to be
significantly greater than Aj’ then a 7 is placed in row

1, column j and 1/7 is placed in row j, column i .

—1362 -



If our objective is to determine the respective
weights of n objects, then the resulting eigenvector
should indicate the relative weights. If we have perfect
information (no judgments are necessary and responses
are not restricted to integers and their reciprocals) we
could simply fill in the matrix using the ratio of the
respective weights: my; = wi/wj. We then obtain a
reciprocal matrix: my = wj/wi = 1/mij' It can be
shown that A = n is the only non-zero eigenvalue for M
and that W = (w,

eigenvector; the correct weight determination is indeed

, Wp) Is its associated

obtained as the eigenvector. This eigenvector is unique

up to a scalar multiple.

If the experiment was needed, however, perfect
information is not available at the outset. But if the
responses are a reasonable approximation to the reality
of the situation. then the responses will approximate
those which would have been placed in the “perfect
information” matrix. Hence the eigenvalue should
approximate n (the number of samples) and the
associated eigenvector should approximate the actual
distribution of the property (weight, etc.) among the
samples. Thus the eigenvector not only ranks the
samples ordinally (indicates smallest, largest, etc.) but
also gives a cardinal ranking (indicates relative
strengths or weights, etc.). In actuality A > n, the
associated eigenvector V = (vy, ..., vp) is unique up to
a multiplicative constant, and when normalized so
that vy + ... + vy =1, v; indicates the percentage of
the total (weight) possessed by object 1. The
eigenvalue ) is a measure of the consistency of the
respouses given by the panelist. A good rule of thumb
is that if A > n + 2, the panelist has contradicted
himself or herself so many times and/or so egregiously
that his or her responses should be ignored. On the
other hand, if A is very close to n, the panelist was very
consistent (although not necessarily accurate or
correct). In short, the eigenvalue is a good flag to
indicate errors in recording data; e.g., a number and

its reciprocal may be interchanged.

If a scale much larger than 9 is used, the
differences in reciprocals become negligible and some
discrimination between samples in  the resulting
eigenvector will be lost. A collection of objects in
which the samples may be too widely diverse should be
subjected to a hierarchical analysis. However, our
experience indicates that while the above 1 - 9 scale
may be appropriate for eliciting and coding human
responses, it is not always the proper scale to be used

in the ensuing matrix analysis. In fact, the scale used

will be reflected in the results. The largest number
used is in essence the ratio between the strongest and
weakest (or heaviest and lightest, etc.) objects in the
resulting eigenvector. Thus an inappropriate numerical
scale will lead to undesirable end effects concerning the
extremes of the objects being compared. This end
effect is extremely volatile when computing percent
error on the low end. Our experience indicates that a
linear rescaling of the 1 - 9 linguistic scale to a scale
determined by the accepted or perceived ratio of the
two extreme objects in the given group significantly

reduces this end-point effect.

An Example: We considered 6 weights and used
the weight ratios to form a “perfect information”
matrix MG' In this case, a weight ratio of 2 indicates
that the numerator weight is twice that of the
denominator, which is quite different from the
linguistic use of the number 2 in the above 1-9 scale.
The linguistic 2 says two samples are almost
indistinguishable.  We linearly rescaled the integer
entries in Mg to a 1 -9 scale to get a reciprocal matrix
Mg, as well as to a 1 -3 scale to get a reciprocal matrix
M. In all cases the eigenvalue A was less than 6.005.
These low eigenvalues merely indicate consistency, not
agreement with experimental measurements. In M,,
the 1-9 scale exceeded the actual maximum weight
ratio of 6. As a result the eigenvector scale
overestimated the heavier weights and underestimated
the lighter weights. In My, the 1-3 scale fell short of
the maximum weight ratio of 6. As a result the
eigenvector scale underestimated the heavier weights
and overestimated the lighter weights. The spread
between the two extremes is too large with a scale of
1-9 and too small with a scale of 1~3. However, all
three scales provided the proper ordinal ranking of the

weights.

As a practical test of our theory we duplicated
Saaty's weight test on five dissimilar ¢bjects of various
sizes, shapes, and weights. Pairwise comparisons of
these objects were made using the linguistic 1 to 9 scale
and the corresponding reciprocal matrix was generated.
The results were distorted significantly from the actual
weight distribution. Nevertheless the eigenvalue % =
5.30 was rather low. Again, this low eigenvalue
indicates consistency of the responses — not necessarily
accuracy of the predictions. On the other hand we
observed that the maximum weight ratio was about 3
and we rescaled the original observations linearly to
1-3 from 1-9. This changed the results considerably.

Using the “correct” scale reduced the maximum
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relative error from 70% to 12%; the error at the volatile
low end was reduced from 70% to 2%. This was
accomplished 'simply by rescaling the original 1-9
responses to a 1-3 scale. The experiment was not
redone. Had the original experiment been redone with
a 1-3 limitation on responses, much of the “fine
tuning” of the responses would have been lost; i.e., not

enough linguistic variation would have been permitted.

An alternative to 1-9 responses (or any
numerical response for that matter) is to use a bar
graph in which the center position represents equality
of the samples and the ends represent extreme
dominance of one sample over the other. Using such a
bar graph, responses can be interpreted on any
numerical scale desired. We used bar graphs of this
type in an experiment designed to test the ability of
panelists to ascertain small differences in samples when
the total magnitude was also small. In short, we
wanted to test the applicability of this process to
situations in which minor differences must be
determined; can the process be “fine tuned” to indicate
detailed differences as well as general relationships?
Again, we tested the process in a situation where the
property in question could also be objectively
measured. Without such tests, the process would have
little credibility in purely subjective situations. The
experiment was to determine subjectively the relative
thicknesses of paper, called “caliper” by the paper
industry. Caliper is usually determined under
laboratory conditions using instruments capable of
accuracy to within 102 inches. Because of the non-
uniformity of any given piece of paper, the caliper is
usually measured in several spots and an average of
these is used as the caliper of that sample. Thus
caliper is an imprecise (even fuzzy) measurement made
on a given sample of paper. Since fuzzy sets provide a
framework in which one can study subjective
judgments, we attempted to determine how closely the
determination of caliper of paper, made by subjective
decisions of panelists, compares with the instrumental
measurements of the same samples under laboratory

conditions.

Interpreting the panel responses on the bar
graphs in the traditional 1-9 linguistic scale yielded
large errors with the largest errors occurring at the low
and high ends. The sizes of these errors would seem to
severely limit the applicability of the process to
situations in which such delicate differences occur and
are to be detected. On the other hand, reinterpreting
the original panel data on a 1-3.14 scale, where 3.14

represented the -maximum ratio in average measured
calipers, improved the results significantly.  The
distortion at the low and high ends was removed and in
several samples, the error was no larger than the
variation inherent in the sample itself. In no case was
the error more than double the variation in the sample.
We think this kind of accuracy obtained from

subjective non-quantified judgments is astounding.

We remind the reader again that we are mnot
proposing that this process be used to measure
objectively quantifiable properties. Rather, we are
testing our theories on objectively quantifiable
properties, such as weight and caliper, so as to lend
credibility to the process when it is used in situations

which are primarily subjective.

Another Experiment. The determination of
print quality has been a subject matter for which many
sophisticated instrumental approaches have been
developed, but human perception is still used as an

integral part of the final evaluation. We studied non-

* impact printer image qualities using paired

comparisons elicited from panels. Linguistic
expressions and graphic responses were both used for
transcribing the panel responses. The responses were
analyzed using the techniques described in this paper.
The purpose of the experiment was to test the
applicability of the process outlined in this paper to
situations in which minor differences must be
determined. The resulting eigenvalue indicated that
the panelists were able to give consistent responses in
making the paired comparisons; panel fatigue and/or
confusion was not a problem. The eigenvector analysis
of the paqel responses, when averaged, gave results
consistent with what one would expect from viewing
the samples. Samples which were ranked as being near
in quality required higher levels of magnification before
significant differences were observed than did samples
which were ranked as being far apart in quality. While
instrumental measurements made on greatly magnified
images can result in overly stringent purchasing
requirements, panel testing brings the determination of
print quality closer to the practical marketing

situation.

Summary and Conclusions. Many applications
in commerce and industry demand far greater relative
accuracy than is sometimes evidenced in the use of the
paired comparison technique to elicit fuzzy properties.
Early indications obtained in a fuzzy analysis should in
many cases be refined. Many arguments can be given

to justify the utility of a 1-9 linguistic scale for
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subjective responses. However, we have found that it is
not necessarily advisable to continue to use the 1-9
scale in the computational process which follows the
In fact, the choice of
computational scale greatly influences the results at the
with related
In short, the choice of

subjective evaluations.

extremes - the low and high ends -
distortions in between.
computational scale dictates (approximately) the ratio
between the extremes of the measured property in the
given samples as generated by the eigenvector. Too
large a scale results in the extremes being separated too

far; too small a scale brings the extremes too close
together. Taking greater care in making the

comparisons cannot correct for this distortion if an
inappropriate scale is chosen.  This distortion is

inherent in the computational process.

Thus in any panel test involving paired

comparisons there are two distinct problems :

1. Using an acceptable scale for the panel
responses. Whether this scale be linguistic, continuous
or otherwise, it would seem that 9 levels on a scale of
1-9 is perfectly acceptable. An exception to this rule
is that if the samples are too diverse, a hierarchical

analysis would te in order.

2. The choice of computational scale should be
treated as being independent of the scale used by the
panelists. If the results are to be realistic and if the
accuracy is to be “fine tuned”, the computational scale
must be close to the actual ratio between the properties
in the extreme samples. This is not a trivial problem,
however. If a fuzzy analysis is indeed necessary, then
presumably this ratio cannot he obtained objectively.
Nevertheless, since some kind of yardstick is probably
desired, industry or marketing experts could indicate
that one or several scales may be “appropriate”. An
advantage of the bar graph approach is that it readily
lends itself to arbitrary computational scales. Thus
results could quickly be processed for several scales and
comparisons made. Then other scales could be checked

- all without requiring further input from panels.
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