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On Necessity-Valued Petri Nets

S.A. SANDRI*

*Instituto Nacional de Pesquisas Espaciais (INPE)
C.P. 515 - S. J. dos Campos -12200 - SP- Brazil

Abstract : We present here two Petri nets formalisms that can
deal with uncertainty by the use of necessity-valued logic. The
first and basic model, called necessity-valued Petri nets
(NPN), can at the same time deal with uncertainty on
markings and on transitions. The second model, called
necessity-valued Petri nets (TNPN), is an extension of both

NPN and timed Petri nets.

1 - Introduction

One of the recent topics developed in the Petri nets research
field has been the treatment of uncertainty. Some models, like
the ones proposed in [1] and [2] introduce fuzzy temporal
constraints [3] in a Petri net formalism and use imprecise and
uncertain markings to monitor flexible manufacturing
systems. A similar approach has been used in [4] to model
fuzzy programmable logic controllers. In [5], [6], {7], we find
studies on how to transform rule-based systems, in which the
knowledge bases are pervaded with uncertainty, into Petri
nets. In [8] fuzzy Petri net languages are discussed.

In this work, we propose to use elements of
propositional possibilistic logic to introduce uncertainty in
Petri nets models. In the following section we describe the
basic concepts in Petri nets used here. We then briefly expose
some fundaments of necessity-based logic, and give a
formulation of necessity-based Petri nets and timed necessity-
based Petri nets. We conclude with a brief comparison of our

models to related works found in the literature.
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2 - Basic definitions on Petri nets
A Petri net is a directed graph containing two types of nodes, -
places and the transitions - , usually associated to conditions
and events respectively (see [9] for a first contact with Petri
nets). Places are graphically represented by circles and
transitions by bars. A token contained in a place, at a given
moment of time, means that a condition associated to the place
is satisfied at that moment. The distribution of tokens in the
places in a given moment of time is called a marking of the
net (see Fig. 1.a). A transition is enabled when each one of
its input places contains the number of required tokens labeled
on the arcs (when only one token is required we do not label
the arc). At each step of the the execution of the Petri net, one
of the enabled transitions is chosen to be fired, generating a
new marking. We may also associate external conditions to a
transition (e.g. sensors). In this case, the transition only fires
if it is enabled and the conditions are true. Formally, aPetri
Net is defined by a quadruple
PN=<P, T, I, O>

where :

P = {pt, p2, ... pn} is a finite set of places,

T = {t1.t2, ..., tk} is a finite set of transitions,

I: T — 2Pis the input mapping from transitions to

sets of places,
O : T — 2P is the output mapping from transitions to
sets of places.

Let p be a place in P, and t be a transition in T. Then p € I(t)
indicates that p belongs to the set of input places of transition
t, and accordingly p € O(t) indicates that p belongs to the set

of output places of transition t.

In this work we only consider safe Petri nets, which are
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those where the number of tokens in a place cannot exéeed 1.
A marked safe Petri net is a pair N = <R, Mg>, where R is a
Petri net, and Mg : P — {0,1} is the initial marking of R. The
notation M; —» M, expresses that from marking M; we

obtain marking M;, through the firing of transition t. Mj,; is

defined as
Mia(p) =1, pE O,
M;.i(p) =0, pEIL and pE O (V),

M. i(p) = Mi(p) , otherwise.

The marking depicted in Fig. 1.a is given by My(p;) =0,
Mg(p2) = 1, M(pa) = 1, which can be synthetically described
by Mg=(011).

A sequence of transitions S = sy...si, 5 € T, is the
concatenation of k transitions fired from an initial marking
Mg ; where s; denotes the i-th transition fired from Mg. For
instance, the sequences of length 2 that we can obtain from the
marked net depicted in Fig. l.a are S =s)s5 = tpt}, and

S'= sy'sy '= tyty.

a)
p1

t1 t3

Fig 1- Examples of Petri net formalisms (8;=8(tj), n; = n(1j)),
L.a) PN, 1.b) TPN, l.c) NPN, 1.d) TNPN.

In the kind of Petri nets considered so far there is no
concern with time. In fact, the transitions are considered to be
instantaneous. One of the Petri net models that deal explicitly
with time is the Timed Petri Net |12}, defined by a quintuple

TPN=<P, T, I, O, 6>
where P, T, I, O are defined as in PN, and 6 : T — T
associates to each transition the length of time required to
accomplish it taken from a time scale T (see Fig. 1.b). The
tokens used in transition t during the time span 6(t) are not
visible anywhere. When a token becomes visible in a place it

may be immediately used by any transition having that place

as input. For instance, let Mg = (0 1 1) be the initial markin,_
at time Tg on the Petri net depicted in Fig. 1.b. For sequence
S =557 = tat; a token will be visible at place p; at time
Ly = To+ 6(ty), and the net will return to the initial

configuration at time Ty = To+ 6(ty) + 6(ty).

3 - Necessity-valued Petri Nets and Timed
Necessity-valued Petri Nets

Necessity-valued logic [11}, also called PL1, is a specific type
of possibilistic logic, in which to each first-order formula ¢,
representing a statement in a knowledge base, we associate a
constraint N(g) = a, where N is a necessity measure (see
[12] for a detailed study in possibility theory, and [11] for a
survey in possibilistic logic). Here we are only interested on
the case where the @'s are propositional formulae. The
constraint N(¢) = o in PL1 is represented by the pair (¢ a),
called a necessity-valued formula. The quantity a is called the
valuation of formula ¢ and is denoted by val(¢). Here we call
(9 &), a necessity-valued proposition when formula ¢
consists of a single proposition. [n necessity-valued logic we
make extensive use of some important properties relative to
necessity measures :

N(pa-@) =0 ; N(pv-g)=1 ;

N(gpap) = min(N(@),N(p)) ; Nlpvy) = max(N(g),N(p))
In PL1, the classical modus ponens rule has been extended to
the graded modus ponens defined as

@ o), (=Y B) — (p min(a, B))

where —> denotes the classical logical implication. Expression
(¢ o) is here called the minor necessity-valued premise and
(¢ —> 1 P) the major necessity-valued premise.

Let us now see how these concepts can be introduced in
a Petri net formalism PN = <P,T,1,0>. Let us suppose that it
is not well-known if a transition t from a set of places I(t) to a
set of places O(t) will be enabled when all the places in I(t)
contain tokens. The necessity measure giving the uncertainty
that transition t will fire can be represented by the necessity-
valued formula (ijAigA...Alg = 01A02A...AO, B), Where
ij € I(t) and o; € O(t). This formula corresponds in fact to
n necessity-valued formulae (¢ — oy f§). where ¢ =ija... Al
The Petri net formal definition can then be extended to
incorporate uncertainty by attaching valuation f to its

corresponding transition, similarly to what is done with
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durations in timed Petri nets. Let us now suppose that the
exact initial distribution of tokens in the set of places P is not
well-known. The necessity measure giving the uncertainty that
a token is in a place p can be represented by the necessity-
valued proposition (p o). We incorporate this information in
the Petri net formalism by assigning a to M(p), in the initial
marking of the net.
A necessity-valued Petri net (NPN) is then formally
defined by
NPN=<P, T,1, O, >
where P, T, | and O are defined as given before and
1 : T — [0,1] associates a valuation to each transition. In
this framework, the initial marking for each place p thus
consists of the lower bounds on the necessity measures giving
the uncertainty that a token is in p. M(p) = 1, which stands for
N(p) = I, means that a token is certainly inside the place, and
will be graphicaly represented by a filled circle, as with the
usual Petri nets formalisms. M(p) = 0, which stands for
N(p) =2 0, will be represented by the absence of any symbols
inside the place. This does not mean that it is impossible that p
contains a token, it only means that the marking on p is not
informative. For the intermediate values of M(p), the marking
on p is graphically represented by a circle containing the value
M(p) (see Fig. l.c).
In this model a transition t is enabled when n(t) > 0 and

M(p} > 0, V p E I(t), i.e. when necessity measures related
both to the dynamic valuations on the places (represented by
the markings), and to the transitions are informative. Let My
and M; respectively be the initial and the i-th marking of an
NPN. Let M; — M, . Marking M, is defined by

Mi.1(p) = min (inf b€ 1y Mi(b), n(1)), p € O(),

Min(p) =0, pEIY, p& O,

Misi(p) = Mi(p) , otherwise.
The expression inf p & 1ty Mi(b) corresponds to the evaluation
of a conjunction of a set of necessity-valued propositions
(p @) at step i. The expression min(inf p & ) Mi(b), n(t))
corresponds to the graded modus ponens ; the first term
corresponds to the minor premise and the second to the major
premise. Note that the marking definition in NPN's reduce to
that of PN's when only certain valuations (=1) are involved
in a firing. As an example, let us consider the Petri net in

Fig. 1.c with n(t;) = .7, n(t2) = n(t3) = n(ty) = 1. For the

sequence S = tat ty with Mp= (0 1 .8), we have
M;=(70.8), My = (0..7 .8), and M3 = (.70 0).

A marking M in any Petri net should not contain tokens
in places representing contradictory conditions. For instance,
if we have two places p; and p, representing conditions ¢ and
¢, we should make sure tha>t w;ve- do not have M(p;) = 1 and
M(p;) = 1 at the same time. A marking in NPN's should be
even more restricted, not allowing M(p;) > 0 and M(p;) > 0
occur at the same time. This should be done to guarantee
coherence, since in possibilistic logic when N(¢) > 0 we have
N(-¢) = 0.

It is important to note that, although feasible, not all
applications require the modeling of uncertainty in both
transitions and initial markings. Indeed, we may conceive
situations where the initial marking is certain and the
transitions are uncertain, - corresponding for instance to ill-
known satisfiability of external conditions to the firing -, or
where all transitions are certain, but where there is only an
imperfect knowledge of the initial localization of tokens in the
places.

Until now, transitions (certain or not) in NPN's are
considered to be instantaneous. We now propose a necessity-
based Petri net formalism that is capable of dealing with
transitions requiring an amount of time to be completely
accomplished. A timed necessity-valued Petri net (TNPN) is
then formally defined by

TNPN=<P, T, L, 0, 0, 5>
where P, T, I, O, 6, and 1 are defined as given before (see
Fig. 1.d). In TNPN's the markings are defined as in NPN's,
and time is treated as in TPN's.

The uncertainty described by TNPN may have diferent
meanings depending on the joint interpretation of 6 and 1. A
first interpretation lets the duration 8 be exact, and 1} concerns
firing conditions. For instance, let us suppose that it is ill-
known if some external conditions on a transition t are true.
Then it will also be ill-known if t will fire when all the places
in I(t) contain tokens. The uncertainty on t would then
correspond on the statement the "there is a necessity a that
transition t will fire, and in this case it shall take exactly x
minutes”. Another interpretation situates uncertainty in the
duration of the firing, corresponding for instance to a

statement of the kind "there is a necessity a that the firing of
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transition t takes x minutes”. The uncertainty in the last
statement is related to the time spent for the transition to be
completed, and not to the satisfiability of the conditions
associated to the firing.

Let the Petri net of Fig. 1.d be such that n(t;) = .7,
n(t2) = n(t3) =m(ty) = 1, and 8(ty) = 1h, 8(tz) = 2h,
6(t3) = Oh, O(t4) = 4h. Let us suppose that we can yield an
initial marking Mg= (0 1 .8) corresponding to 5.5 hours
ago. Let us suppose that we want to know the maximal
plausibility that place p; contains a token, and that the last
marking is kept until the end of the current transition. We have
3 possible sequences with length of time greater than 5.5h.
With S = tyt1ty, transition t4is firing, and the last marking was
(0.7 .8). With §' = tatytat, t; is firing, and the last marking
was (.7 0 .8). With §" = tatyty, tois firing, and the last
marking was (0 .8 0). Then the maximal plausibility

(necessity) that there is a token in place p; now is .7.

4 - Conclusion

We have presented two Petri nets formalisms based on
necessity-valued logic, which is a special kind of possibilistic
logic. The first and basic model, called necessity-valued Petri
nets (NPN), can at the same time deal with uncertainty on the
markings and on the transitions. When uncertainty is present
in both the markings and the transitions NPN's can be used to
model rule-based systems, requiring only some slight
modifications on the markings. Let M; — Mj, . Then, for all
p € O(t), we will have M, (p) = max(M;(p),
min(inf y & 10y Mi(b), §(t)}). This scheme thus represents an
alternative approach to those used in [5] and [6].

The second model, called necessity-valued Petri nets

(TNPN), is an extension of both NPN and timed Petri-nets..

Although dealing with time and possibilistic logic, it is not a
direct application of rimed possibilistic logic |13 ], in which we
deal with dates (e.g. "the lights on the production plant will be
on certainly after 8am., and before 6an"). The model
proposed here cannot deal with statements of the type "the
transition will take around x minutes to be completed”. It has
thus less expressive power than the model proposed in {1[ and
{2], which makes use of fuzzy temporal constraints [3] ; it is
however of much easier manipulation. it also represents a

more formal alternative approach to that used in [7}].

Future research on NPN's and TNPN's include extension
to other models of Petri nets, - such as Petri nets with objects
for instance - , and a deep study of the relations between

TNPN's and timed possibilistic logic.
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