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ABSTRACT

In this paper, first, the fuzzy Petri net inference mech-
anism with learning function is proposed by using the
extended fuzzy Petri nets. Secondly, a control system
with this new inference engine is proposed. This system
can do automatically and easily the knowledge acquisi-
tion from the operator’s empirical data and can also be
controlled adaptively under the big parameter change.

1 INTRODUCTION

A fuzzy control has a distinguished feature that
the control is capable of incorporating expert’s emper-
ical control rules using his linguistic description. [4] ~
[11) But, automated extraction or identification of the
fuzzy if - then rules is one of big issues in a fuzzy con-
trol. Several researchers have done on the identification
capability as well as the learning capability of neural
networks for their applications to fuzzy control. [7] ~
[10]

However, another model for a fuzzy control has been
desired because the neural network model has the link-
age explosion and the computation of exponentials for
each linkage of neurons. [4], [5)

In this paper, first, the fuzzy Petri net inference mech-
anism with learning function is proposed by using the
extended fuzzy Petri nets. The new controller can au-
tomatically identify the if - then rules and tune the
membership functions by utilizing expert's control data.
Identification capability of the new fuzzy controller is
also examined using numerical data. Secondly, an adap-
tive control system with this new inference engine is pro-
posed. It is shown that this system can be controlled
adaptively under the big parameter change.

2 FUZZY PETRI NETS AND FUZZY
INFFRENCE MECHANISM

2.1 Definitions_and Notatjons for the
Extended Fuzzy Petri nets[1]~[5].

First, let us define the ordinary Petri nets[1].
Definition 1] Ordinary Petri Nets[1],[2]
he structure of an ordinary Petri net can be defined

as a directed bipartite graph with two disjoint sets of
nodes, § and T, called a set S of places (symbol:(Q)

and a set T of transitions (symbol:]}). Assume that car-
dinality of § is n. Marking M € N™ is defined as a
non-negative integral vector whose component M(p) is
a number of tokens on the place p. For a subset U of S,
the symbol *U denotes the set of all transitions t’s such
that there exists an arc from ¢ to p € U. The symbol
*U is called the set of input transitions of U. Similarly,
U* denotes the set of all transitions ¢'s such that there
exists an arc from p € U to ¢t and is called the set of
output transitions of U. For subset @ of T, the set of

input places *Q and the set of output places Q° of Q
are similarly defined. For a transition ¢, t is said to be
firable at M iff M(p) > 0 for each p € *t. When the
firable transition t at M fires, the tokens are moved as
follows and the new resulting marking M’ > 0 is defined

M'(p)=M(p)+1:pet*Np gt

M'(p)=M(p)-1:pe®tnpgt® (1)
M'(p) = M(p) : otherwise. 1
Next, we review the new extended fuzzy Petri

nats(4](5]. The definition of ordinary Petri nets is in-
cluded in that of the extended fuzzy Petri nets. For
modeling of vague discrete events, let us define the ex-
tended fuzzy Petri nets by changing the definition of
ordinary Petri nets.

[Definition 2] Extended fuzzy Petri nets (EFPNs) [5]

e Place: The same definition and symbol of a place
as those in ordinary Petri nets are used.

¢ Transition: Symbol | :Free firing transition, but
this firing is selective.

s Token: Let the symbol " be the token with
the weight w which is any positive real number. Let us
define the virtual token when W equals zero and denote
it © = o°. The virtual tcken is useful to distinguish the
following two cases:

(D The premise of if-then rule is denied, then the place
has no token.

@ The if-then rule has not worked at that time, then
the place has no token.

The virtual token implies the case (O

¢ Firing rule: By a firing of firable transition ¢ at
M, the token is moved and the new resulted marking

M' > 0 is defined as follows, where a = mf"M(p;) and

pi €°t.
M(p)=M(p)+a:pet*npg®t,
M{p)=M(p)~a:pe®tnpgt*, (2)
M'(p) = M(p) : otherwise.
o Arc: There exists no weight on it. See also Re-
mark 1. 1

[ Definition 3 ] The max.transition
Let the max.transition be the transition ¢ which trans-
fers the maximum token-weight of all the input places
p's € *t into all the output places p''s € t°* . ]

However, if we use the virtual tokens, some in-
hibitors (—o), and the regular transitions which obey
the firing rule of Definition 2, we can represent the max
transition by using EFPNs.

[Remark 1]

Although 1t is defined that an arc has no weight in
the extended fuzzy Petri nets as in Definition 2, it is
simple to use the weight on the arc (¢,p) as shown in
§2 - 2. However, the weight on the arc is transformed
into the net of Difinition2 because of the firing rule of
the regular transitions. 1

Hereafter, let us denote the extented fuzzy Petri
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nets EFPNs for simiplicity.

2.2 Fuzzy Inference Mechanism using
EFPNS[5]

Let us consider the if-then rule; If X is 4, then
Y is C, where X and Y are fuzzy variables. First,let
us explain how to model the discrete membership func-
tions of both the premise and the consequence by using
examples.

If X has the discrete membership functions of
Fig.1(a), then the EFPN model for Fig.1(a) is obtained
as in Fig.1(b), where “9” implies “t|”, i.e., the double
arc. When the input for X 1s 1.0, then the weights for
P and Z is 0.5 and 0.3, respectivey.

I{ Y = C has the discrete membership function of
Fig.2(a) after Mamdani’s min-max opetrations, then we
have the EFPN model of Fig.2(b). When the resulted
weights for P, Z, and N is 0.8, 0.2, and 0.0, we have
the value of 0.8, 0.5, 0.2, 0.2, and 0.0 on the discrete
universe 2, 1, 0, -1, and -2, respectively.

Secondly, let us consider the fuzzy inference mecha-
nism of two input variables, X; and X,, and one output
variable, Y, by using Mamdani’s method, where each
variable has three lingistic labels, P, Z, and N and the
decision rules are shown in Fig. 6(a). Then, we have
nine if-then rules.

If X, is A; and X5 is By, then Y is C;, i =
1,2, -+ ,9. Moreover, the resultant fuzzy number from
the above each rule is determined by the max. operation
(i.e., the max. transition).

Therefore, we have the EFPN model shown in
Fig.3$b) for the above fuzzy inference mechanism.

I we adopt gravity calculation as a defuzzification
method, the output Y* of the fuzzy inference mecha-
nism is determined by Y*= [YC*(Y)dy/ [ C*(Y)dy ,
where C*(Y) = Cy(Y)V Co(Y) V--- V Cy(Y) and v
denotes maximum. Note that we can use the resultant
fuzzy numbers, P, Z,and N, of Fig.3(b) for the above
defuzzification.

From Fig.3, we can easily understand each reason-
ing process and can do easily and effectively the knowl-
edge acquisition because the extended fuzzy Petri nets
EFPNs avoid the linkage explosion of the usual neural
networks by linking only conditions that combine into
rules, whereas neural networks link every neuron cell
in a layer with every other neuron in adjacent layers.
Further, the outputs of EFPN transitions are extermely
simple and efficient to compute, while the output func-
tions of the usual neural networks involve the computa-
tion of exponentials for each linkage of neurons[4],[5].

3 AUTOMATED EXTRACTION OF
FUZZY IF-THEN RULES

3.1

Method
The automszted extraction or identification of the
fuzzy if-then rules is one of big issues in a fuzzy control
or a fuzzy inference engine.

In this subsection, let us show an automated rule-
extraction method for the EFPN modelled fuzzy infer-
ence engine.

(1) The setting of the membership functions for the
premise of a rule;

The membership functions for the premise of a rule is
fixed such that each membership function has the equi-
width and that it is regularly spaced on the universe,
where each fuzzy gain is adjusted to cover all the input
data.

(2) Initialization of the consequence of a rule;

All the membership functions of the consquence are

set zero at the biginning.

Automated Rule-Extraction

£3) Automated extraction of the membership functions
or the consequence of a rule:

The consequence of an if-then rule is characterized by
the weights of arcs from the transitions, of which input
places imply the resultant conditions of each rule, to the
places which imply the discrete points on the universe.
Then, we can generate the membership functions of the
consequence adjusting the above weights to the expert’s
input data. Let X, and Y, be the input-output pair
at time ¢ and let the token weight on the place which
implies the adaptability of the premise of the i-th rule
be O;(s). Then, the token weight of the consequence at
time t 4+ 1, W;, is determined by the next equation;

Wij(t+1) = Wi; (1) - (Yo=Y ™)-(Y" - j)-Oi(s)-LF,  (3)

where j is the discrete value on the universe,W;;(0) = 0
,and LF =0.001 is the learning factor.
(4) The performance evaluation of a rule;

Measure the infered output to the expert’s input data
by using the new extracted rules and calculate the error
between the infered output and the expert's output. If
the error is too big, adjust the interval of the premise
and extract again the membership functions of the con-
sequence .

3.2 Performance Evaluation
In order to check the usefulness of the learning
fuzzy inference engine, we use the following nonlinear
system with three inputs (X;, X, X3) and an output
(Y), which was used to verify the learning capability in
Refs.[7],[8],[11];

Y=(1+X" + X7+ X710 (4)

Table 1 is the obtained results about evaluation,
where X4 is a dummy variable. In Table 1, E; is the av-
erage error for identification data (No.1~No.20) and K,
is the average error for evaluation data (No.21~No.40).
In our experiment, E; is very good compared with oth-
ers [7], [8], {11}, but E, is not so good. As a whole, we
can say that our fuzzy engine has the same identification
capability as that in [7], TS], [11].

4 SIMULATION

In this section, the simulated results for the con-
trolled object of the first-order lagging system with dead
time are given. The control system used is Fig.6 with-
out the output trajectry estimator, where the learning
fuzzy controller has two inputs (e, Ae) and an output
(Au) with seven premise membership {functions.

e adopted the input and output data of PI control
as the expert’s data for automated extraction of rules,
where K, = 4.2, K; = 0.12 , and the sampling period
7 = 0.2. The number of input and output data for
identification is 250 from ¢ = 0.0 to ¢ = 50.0 (sec).
Moreover, the fuzzy gains are g, = 0.02, ga. = 0.5,
and ga. = 1.7, where e, Ae, and Awu is the error, the
change of error, and the change of manipulated variable,
respectively.

Table 2 shows the obtained fuzzy rule table in which
the number implies each membership function. In this
simulation, 35 rules out of 49 are automatically gener-
ated.

One of controlled results under the automatically ex-
tracted rules is shown in Fig.4 together with PI control,
which are step responses of a feedback control system
which incorprates the above fuzzy engine and a con-
trolled object of a first order lagging system with a dead

G(s) = e—‘Z:

time ; 1¥20s °
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5 CONTROL SYSTEM WITH FUZZY
EII"JI'\II‘]IB{I NET MODEL INFERECE EN-

Let us consider the adaptive modification of if-then
rules to overcome the system paramater change or the
disturbance by using the knowledge about the output
trajectory which implies a kind of the higher rank knowl-
edges than the expert’s operating knowledges. This
problem is another important issue in a fuzzy control{6].
Fig.6 is the blockdiagram of the fuzzy control system,
where the Fuzzy controller in Section 4 is used and the
output trajectory estimation and the performance eval-
uation are as follows.

5.1 Output Trajectory Estimator
The fuzzy if-then rule for the output trajectory es-
timator has two inputs (e and Ae) and an output (the
change of error at the next time ; Ane ) and the range
of the universe of both the premise and the consequence
is from -9 to +9 and it is discretized as the integer. The
number of rules is 9 x 9 = 81. The estimation process
1s as follows.
(1) Collect the operator's input and output data
and determine each fuzzy gain for e, Ae, and Ane.
2) The initial learning or identification;
xtract the knowledge for each fuzzy if-then rule
for the output trajectry estimator from the operator’s
input and output data by using the same automated
rule-extraction method as that in Section 3.
S}) On line adaptation;
ach consequence of rules of the fuzzy controller is
modified such that Au(t;~1) equals D su(tz—1) by using
the method of §3.1 three times and the next equation;

D_Ae(ty) — Ae(ty)
Ae(ty) — Ae(ty)

where Ae(ty), Ae(t2), and D_Ae(t;) are defined in Fig.5
and Au(tp — /) is the change of manipulating variable at
time 15 — 1. 1

Each fuzzy gain for e, Ae, and Ane is determined as
follows; g. = 0.1, ga. = 2.0, and Ane = 40.0 .

The idenification of the 9 x 9 rules for the output tra-
jectory estimator is done as the same way as that in
Section 4 and 48 rules out of 81 are automatically gen-
erated, where the maximum learning repetitions is 2000
times.

D_Au(ig-—l) =

'Au(tg—l), (5)

5.2 Simulation for Fuzzy Control Sys-
tem

In order to check the usefulness for the system pa-

rameter change in Fig.6, we simulate the next case,

where the parameter is changed at time t = 20(sec).
—2s ~2s
Gls) = iy = G(8) = 15100

The simulated result is shown in Fig.7 together with
PI control results.
Fig.8 is the simulated result with the disturbance

d = 80 at time t = 25(sec), where G = 1:-_22(;3' We

could recognize the usefulness of adaptation for the dis-
turbance of being less than or equal to 80, but for more
than d > 80, it was difficult to control the disturbance
because the knowledge of the output trajectory estima-
tor was not enough to control those bigger disturbances.
If we identify directly the knowledge of the estimator
from the desired output trajectory instead of the op-
erator’s input and output data, it seems that we can
improve the adaptivity for bigger disturbance.

6 CONCLUSIONS

In this paper, we proposed alearning fuzzy inference
mechanism, or a fuzzy controller, by using the extented
fuzzy Petri nets. This fuzzy engine could acquisite easily
and effectively the knowledge for each if-then rule from
the expert’s operating input and output data.

For demonstrating the capability of the new fuzzy
engine, we also simulated step responses of a feedback
control system which incorporated the fuzzy engine and
a controlled object of a first order lagging system with
a dead time. Moreover, we applied this new engine to a
control system with parameter change and disterbance.
Then, we comfirmed that the system could be controlled
adaptively under rather big parameter change and dis-
terbance.

Therefore we can conclude that the fuzzy Petri net
inference engine has some superiorities to neural net-
works; the net structure as well as computation is sim-
pler and each reasoning process can be easily under-
stood. Then the knowledge acquisition can also be done
easily and effectively.
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