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Abstract

Fuzzy techniques are applied to the positioning of an
elastic beam. The advantage is that the system model is
not needed. A simple fuzzy friction compensator is also
used. The final position is achieved within 3/2 the pe-
riod of the fundamental mode. A fuzzy set of rules is
applied for large-angle positioning, with adaptations that
reduce the effects of shock. In this case, the final posi-
tion is achieved within two fundamental periods. There
1s typically some final error attributed to the dry friction.

Introduction

The control of flexible manipulators has received con-
siderable attention recently. This is partly because this
simply posed system challenges the theoretical aspects of
traditional control methods. Another reason is more prac-
tical: as manipulators become smaller and lighter in the
goal of increasing speed, they become more flexible.

Some general and theoretical aspects are discussed in
[1-2]. Most authors have successfully used state-feedback
control, such as the LQ method [3-5], although Laplace
transform techniques {6] and inverse methods [7] have also
been proposed.

The drawbacks are that the system must be accu-
rately (and sometimes painstakingly) identified, and the
the nonlinear features of cheap, commercially available
motors are detrimental to performance. Traditional con-
trol strategies also introduce shocks, which reduce the
quality of the result. Shaped-torque techniques have been
developed to dzal with this problem [5,8-9].

This paper investigates an alternative. A flexible
beam is controlled by fuzzy methods. No system model is
used. Only one elastic mode is controlled. Furthermore,
cheap harmonic-drive motors are used. These motors have
friction. A fuzzy method is used to compensate for fric-

tion. Since this uses no modeling, it is easy, but there is
some tradeoff with precision.

The Experimental Robot

The experiment (Figure 1) consisted of a flexible,
hardened steel beam, 0.72 m in length and 1 mm thick,
clamped to a rigid hub. The radius of the mount was 1
cm. The hub was attached to a Modro Robot [10]. A
harmonic-drive motor with a gear ratio of 100:1 applied
torque to the hub. The angular deflection of the hub was
sensed with an optical encoder. Strain gages sensed the
bending of the beam. This signal was calibrated against
the first bending mode to approximate the tip deflection.

A steel beam of 0.4 m length and 2 mm thickness was
mounted to the above beam in effort to separate natural
frequencies in the first and higher modes of vibration. At
times, a 200 g payload was attached to the tip of the
beam. With the payload, the beam exhibited a visible
torsional effect during deflection.

For small vibrations in the clamped beam, the fun-
damental frequency was 0.97 Hz, and the second modal
frequency was 10. Hz. With the payload, the fundamen-
tal frequency was 0.46 Hz.

The attached steel beam, the strain-gage sensor sys-
tem, and the torsional effect, are examples of aspects
which are difficult to model, adding to the temptation of
avoiding the system-identification step by using a fuzzy
controller. Additional modeling obstacles are the friction
and play in the harmonic-drive motor.
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Figure 1. Schematic diagram of the experimental
robot. 0 represents the angle of the rigid hub,
and x represents the relative tip displacement.
T is the torque applied to the hub,
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Fuzzy Methods

Normally, fuzzy controllers take all of the measured
outputs, convert them to fuzzy vectors, employ a rule
table, and defuzzify to obtain the control signal [11]. In
the case of the elastic beam, we measure four states: hub
angle, angular velocity, relative strain, and strain rate.
Four outputs lead to a fourth-order rule table, i.e. a table
of dimensioen n X n X n X n, given n membership functions
for each signal. This is too large to visualize. Without
visualization, it is difficult to use intuition.

To this end, we have constructed two second-order
rule tables, one corresponding to hub angle and angu-
lar velocity, and the other relating to relative strain and
strain rate. Each lower-order subset is operated upon in
the usual fuzzy manner. The resulting two defuzzified
outputs are weighted and summed, so that v = kyu; +
koug, where u is the control signal, u, and ug are the de-
fuzzified signals associated with the relative displacement
and angle, respectively.

For simplicity, the same form of membership func-
tions is used for each variable, and also for the control
signal. The form membership functions, shown in Figure
2, effectively introduces control parameters to the system.
In this experiment, b = 0.025 m for the relative displace-
ment signal, b = 1.375 m/s for the relative velocity signal,
b = 0.075 rad for the hub-angle signal, and b = 0.25 rad/s
for the angular-velocity signal. These values were taken
based on envisioned ranges of the motion.

The two rule tables (Figure 3) are generated from
intuition. The idea is that a positive torque on the hub
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Figure 2. Membership functions for variables 0, é

x, and Xx. NL, NS, Z, PS, and PL stand for negative
large, negative small, near zero, positive small, and
positive large.
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Figure 3. The rule tables for (a) 6 and 8, and

(b) x and x. The abbreviations NL, NS, Z, PS, and

PL stand for negative large, negative small, near

zero, positive small, and positive large, respect-

ively. For example, if x is negative large, and

x is positive small, then the table indicates a

control signa! that is negative small.

tends to increase the hub angle and angular velocity, while
it tends to decrease the relative strain and strain rate.
This is consistent with an optimal linear-feedback con-
troller for a single-mode model of the system [4].

The defuzzification procedure was motivated by sim-
plicity. The defuzzifying membership functions are speci-
fied by mass and centroid alone. The shapes of these func-
tions are thus not unique. (The centroids and masses were
derived from membership functions of the same shape as
those used above.) In defuzzification, the weighted sum
of these masses is performed. The weights are determined
via the minimum operator [11]. The resulting controller
is piecewise smooth with saturation, similar to a sliding-
mode controller with a boundary layer [12].

The sampling time was 0.05 seconds.

Friction Compensation

In the experimental setup, friction is a dominating
force. The beam tip is capable of oscillating with an am-
plitude of approximately 0.1 m without overcoming the
static friction in the hub. Not only can friction limit the
accuracy of the manipulator, it can also lead to limit cy-
cles and other complicated behavior [13]. For these rea-
sons, friction must be compensated.

Traditionally, friction is compensated in a variety of
ways, ranging from rather sophisticated observer systems
[14-16] to simply counteracting with a signum function
[17]. As long as this signum function exceeds the actual
friction force, precision can be obtained [18] (perhaps with
chattering in the controller). Another alternative is to use
stiff controllers (see Gorinevski [19]).

Since we are working with fuzzy systems, there is no
sense in using observer systems that need system mod-
els. This controller employs a fuzzy friction compensator.
The value of static friction g, is estimated roughly. Based
on estimates of the angular velocity, a fuzzy vector is con-
structed which indicates whether the hub is probably slip-
ping, or probably sticking. These membership functions
are shown in Figure 4. The parameter b = 0.005 rad/s. If
it is probably sticking, it is probably given enough extra
force to overcome stiction. Defuzzification is performed as
above, producing a friction compensation torque g which
is then added to the control signal. Thus, the net applied
torque 7 has the form 7 = v 4 p.

Such a fuzzy compensator is equivalent to a piecewise-
linear approximation to a signum function. The width d
of the transition from positive friction to negative friction
introduces a parameter to the system. This parameter
will affect the accuracy of the final position of the robot.
However, this region of finite slope removes the chattering
effect observed with signum compensators.

Results

The fuzzy controller is applied to the problem of po-
sitioning a beam, initially at rest, from a start postition
to an end position, which is taken to be zero. An exam-
ple of a small motion (on the order of tenths of meters) is
shown in Figure 5 in terms of the absolute displacement of
the tip, the control signal, and the friction compensation.
The parameters were k, = 0.2 and kg = 0.4. The time at
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Figure 4. Stick-slip membership functions. P, N,
and Z are for positive slip, negative slip, and zero
velocity (possibly sticking). d = 0.005 rad/s.
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Figure 5. The upper graph plots the estimated

motion of the beam tip. The lower graph shows the
control signals y and T=p + w

which the end position is achieved is approximately 3/2
the period of :he first mode of the uncontrolled beam.
(High-performance flexible robots might typically be in
the range of 3/2 the period). Similar results were obtained
with other parameter values, with different settling times
and overshoots.

There is & residual oscillation visible at the end of
the control step. It is likely that this is present because
the friction cornpensation is done in approximation. This
can also cause a final offset in position.

Note that the displacement is estimated from the
strain based on the first mode of bending. Ignoring higher
modes can cause instability.

The controller has also been applied to a robot with a
payload. Results are similar if the values of k; and kg are
adjusted slightly. Note that, with a payload, unmodeled
torsional effects are visible.

Finally, a modified set of memberships and rules (Fig-
ure 6) are applied to the robot for large motions (around
#/2 in hub angle, or nearly a meter circumferentially).
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Figure 6. Membership functions and rule table for
large, positive initial angles. 1 and LI refer to
"initial angle" and "large angles near the initial

angle”. NX calls for a negative, extra-large torque.
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Figure 7. The upper graph shows the large-angle

motion of the beam tip. The lower graph plots the
control signals p and T=p + w

These modified rules include additional members of “very
large angle” and “very large torque”. Near the starting
point, however, the applied torque is to be small. The
goal here is to avoid large shocks and residual vibrations.
The controller operates reasonably for some initial
positions. Since this controller adds nonlinearities, re-
sponse varies with the initial conditions. Figure 7 shows
an example of positioning for large angles. In this case,
the tip reaches the target in approximately two funda-
mental periods of motion, with little residual vibration.
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Conclusions

We have applied fuzzy control methods to an elastic
arm. The object was to seek an easy way to steer elastic
robots. The entire system identification step has thus
been removed, and only the first mode of the robot has
been considered for the intuitive control scheme. This
might limit performance.

The implemented fuzzy friction compensator is equiv-
alent to a piecewise-linear approximation to a signum
function. Again, it required no system identification or
observer construction. An estimate of the static friction
is all that was used. Error in the friction compensation
causes some final oscillation or offset.

The controller was in some sense a hybrid of pro-
portional feedback and fuzzy control. Coupling the fuzzy
controller to the friction compensator, the resulting robot
motion would be adequate for low-precision tasks.

The parameters have been chosen based on intuition
and simplicity. Some type of optimization strategy, such
as in {20}, might improve the results. Improvements would
also accompany an upgrade in the friction compensation.

Controlling higher modes might bring improvements.
Using modal sensors, the intuition would be similar to
that of the first mode. For even-numbered modes, the
intuition would be negative that of the first and other
odd-numbered modes. The weights necessary for each
modal control signal would have to be determined.
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