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ABSTRACT

We investigate

a systematic design procedure of automated rule generation of fuzzy logic based

controllers for uncertain dynamic systems such as an engine dynamic model. “Automated Tuning” means
autonomous clustering or collection of such meaningful transitional relations in the state-space. Optimal
control strategies are included in the design procedures, such as minimum squared error, minimum time,
minimurn energy or combined performance criteria. Fuzzy feedback control systems designed by the
cell-state transition method have the properties of closed-loop stability, robustness under parameter
variabtions, and a certain degree of optimality. Most of all, the main advantage of the proposed approach
is that reliability can be potentially increased even if a large grain of uncertainty is involved within the
control system under consideration. A numerical example is shown in which we apply our strategic fuzzy
controller design to a highly nonlinear model of engine idle speed control.

1. Introduction

Fuzzy logic/linguistic control can be categorized as a
knowledge-based system or an expert control paradigm, the
reason for which is that every control action derived by the
fuzzy inference engine is based on some a priori knowledge
source [11. However, the difficulties in constructing a rule base
have prevented the fuzzy engineers from approaching to a
generalized methodology for fuzzy rule based control systems
[2] as shown in Figure 1.

We propose a systematic design procedure of automated
rule generation for uncertain dynamic processes. Fuzzy logic
based feedback control is suitable for our physical target of
automated rule generation. Membership functions stored in a
fuzzy logic controller can be easily modified and updated
without repetitive tadious re-evaluation of different dynamic
models. This procedure of generating the rules required in a
fuzzy logic controller should guarantee stability of the
closed-loop system and robustness under parameter variations.
We utilize the cell-to-cell mapping theory originally introduced
by Hsu [3] and later applied to fuzzy dynamic systems by
Chen et all[4] The key point in making a stable control rule
base is that every stabilizable feedback system has a chain of
state transitions frorn one cell-state to another. Consequential
elements of such transitions are anticipated according to applied
control action of each rule. Data required for this transitional
set of rules can be collected via [5]

* A priori information such as experimental results
* Numerical simulation runs based on dynamic models
* Expertise and heuristics

Specifications, accuracy and precision, of the system
tolerances can be arbitrarily adjusted and are a function of
resolution of design parameter[6]. The next section deals with
the step-by-step procedure as to the synthesis of a fuzzy
logic control rule base based on the given input-state data
pairs of a particular nonlinear dynamic model. These are the
training data for approximate learning.

2. Automatic Tuning for Fuzzy Logic Controllers

2.1 Fuzzy Logic Control Based On Cell-State Transitions

General fuzzy controllers have four components: fuzzifier, rule
base, fuzzy inference engine, and defuzzifier. The control rules
can be determined by using the cell-to-cell mapping  theory[3]
and the cell-state transitions. Comparing with the
point-to-point mapping theory, this concept make use of the
intervals and a finite number of cells in the cell-state. The
dynamical characteristics are preserved as far as the resolution
allows.

DEFINITION 1: A “Cell” z is defined as an n-tuple of integers
in the cell-state space Z such that

z = (Z],ZZ,...,Z!\} = Titon 21 €& n

where e; is the unit vector in the direction of z; and the
corresponding X; is represented by an interval X;

(zi - 05 hi <xi <(z +05 h; (2)
(hi ... interval size, z: ... integer representing x;) =

DEFINITION 2: A “Cell-to-Cell Mapping” F is a relation
between cells in the cell-state space, F: Z —> Z, and the

function values have one-to-one correspondence with
the point-to-point mapping f such that

X1 = f(xy) € 2° <—> 72" = F(z) 3w

satisfies
z' = F(z") (4) m

DEFINITION 4: A k-Period Motion Cell is the distinct k cells
z(1),...,z(k) that satisfy

z(1) = F(z(1)) and zm*1) = F*z(1)). n
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2.2 Systematic Procedure for Automated Rule Generation
Step 1: Consider a two-state dynamic model given by

dxa/dt=f1(x1,%2, 6, 8) . (5a)
dx./dt=f,(x1,%2, 8, 6) (5b)

where x;, Xz are the states (or the errors); f), f; are the
nonlinear functions; and &, ¢ are the control inputs. From the
admissible controls, we select finite representative constant
values of 8's and 6’'s and we call them é&;i's and 68j's.
These crisp numbers will be fuzzified later after the
performance is satisfied. Moreover, we choose finite
representative points in the state space to anticipate the
trajectories from one subspace to another. These countless
trajectories are called a 'manifold’ and one set of data is
collected by setting & and €; constant. Repeated collections of
such information are used next in order to obtain a rule base
for feedback regulation of x; and xp ie, X, x2 —> 0 as t
increases. We denote Xy, Xz, the m-th and the n-th interval
sets of x; and x» respectively. Linguistically, we define

L = Xia X Xon 6)
and then L. is a finite region in the state space. By applying
fixed controls, 6: and @; one set of transitional relations is

obtained for example,

Rules of Dynamical Behavior
(Cell-State Transitions by (84, 61)):

(81, 01) ¢+ zilwt —> z{lLu)
(&1, 61) @ z{lw} ———> z{Lx}
)
(61, 601) ¢ z{lss} —> z{ln}
Fontrols Prev.State | Next State | Time t | Perf.Index
{1,2} {3,4} 0.12sec 5.2
31 B1 {2,3} {3,3} 0,23sec 7.7
{4,3}% {4,3}= o sec 0.0
{1,3} 1,2} 0.41sec 4.3
31 62 {2,1} {4,3} 0.37sec 11.2

Table 1, Cell-State Transition Table
in the 2-dim. Cell-State Space

The above transitions are valid if the average dynamic behavior
of the systemn shows the above rules. We continue to change
(8:,0;) to get other sets of transitional rules and exhaustively
gather finite number of transitional relations. When we store
the above information, we add time required during transitions,
and other optimal performance indices such as energy, squared
errors, etc. These transition relations are stored in the table
which we call a “cell-state transition table”. An example of
cell-state transition table in the 3 dimensional cell-state space
is shown in Table 1. Changing (8:6;), we may have the
same L., for the source and the destination and this is called
an ‘invariant cell’ or an ‘invariant manifold’. For an invariant
cell, there should be a design limit in the transition time since
it is an indefinite stay in that L.. It is emphasized that the
target L. (the specified goal) must have an invariant manifold
for some fixed controls (8,8 ;) for convergence and asymptotic
stability. This is equivalent to the ‘reachability condition’ in
the classical control theory. The target is denoted as L'.

Step 2: From the collected data, we generate an N-ary tree
that connects from one node L to another. The root of the
tree is L' and we avoid any looping structures. We proceed
with a backward chaining search technique in artificial
intelligence (Al) and the search procedure is initiated by finding
all possible dynamic transitions to the target region L'. There
may be multiple paths from one region to another and we
eliminate multiplicity and extract only one transition by
considering the following concepts with priority from Pl to P3:

P1. Minimum Euclidean Distance
P2. Optimal Strategies
Minimum Energy, Minimum Time,
Minimum Squared Errors, or Combinations
P3. Redundancy in Controls, Transitions

The elements of the finalized tree constitute a set of
control rule base. These rules are automatically generated on
the basis of optimal performance criteria such as minimum time
or minimum energy concepts. Simply, the transitional relations
that force the trajectories from any points in the state space to
the desired goal within the prescribed tolerances are themselves
the control rules for feedback regulation. We store the
membership functions for the transition relations in matrices Pi
and C;, in which rows the numerical values in [0,1] are the
chosen membership functions.

Step 3: The fuzzification procedure undertakes the rule
generation so that the crisp transitions between the regions in
the state space can be smoothed out. To each L is assigned
as many elements as accuracy and precision can allow. In a
practical sense, five to seven elements are suitable for
fuzzification of L. in the state space. Membership functions
may be triangular or of simple functional type. The trade-off’s
between the number of quantization in Lmn and the transition
smoothness, the total numbers of Xi., X and the performance
are important and these issues are related to heuristics. For

each rule, numbers between O and 1 are stored for each vector
array of one membership function. In our example, a two-input
two-output fuzzy controller has two vector arrays for the
conditional parts and two vector arrays for the action parts for
each rule. The fuzzy sets for control inputs &; and 6; are
denoted as 4; and ®; respectively while x, and x: are the
fuzzy sets for xi and X, respectively.

2.3 Fuzzy Inference Using Decomposition of Fuzzy
Hypercubes

For practical purpose, a discrete version of fuzzy controllers is
needed and it is convenient if we utilize a decomposed fuzzy
hypercube [7,8] which is suitable for implementing a fuzzy logic
controller with the cell-state mapping concept. Each rule
numerically stored in a fuzzy hypercube corresponds with each
cell in the cell-state. For each rule, one membership function in
Xia is stored in the premise matrix nol, P, and so is
another in the premise matrix no.2, P, and so on. Each row in
P, or P; is the membership function obtained in the stepwise
procedure stated earlier. The same is true for the consequence
matrices, C, and C,, representing 4; and @; for each rule. Let
the max-min product be denoted as “-", then for given fuzzy
sets x1 in X and x: in Xon, the control input fuzzy sets, 4
and @, are obtained as

4=Clo{(Pro x1)e (Pro x2)) (8a)
O =C o {(Pro x)e (Pro x2)) (8b)

where Ci” is the transpose of the matrix C; and “e” is the
element-wise minimum operator. The crisp results of 4 and @
are

& = DEFUZZIFIER( 4) (9a)
¢ = DEFUZZIFIER(®) (9b)
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where DEFUZZIFIER(.) is a defuzzification operator chosen
among the maximum criterion method, the mean of maxima
procedure, and the centroid algorithm.

3. Application: Design of An Engine Idling Speed
Fuzzy Controller

Simulation Model: The well-known model for engine idling
speed control has heen rigorously studied in [9,10). For
simulation input-state training pairs, we collect the data
exhaustively for the given fixed control values from the
following nonlinear model with uncertainty: Let x,=N (Engine
Rotor Speed [rpm]), x2=P (Manifold Pressure [kPascall).

Rotating Dynamics:

dx/dt = Ko (Ti(xt, 8, maolt-7)) - Tu(x.Td))  (10a)
Manifold Dynamics:

dxo/dt = Ko (mai(xz, 0) ~ mao(xi, X2)) (10b)

Equations (10) are highly nonlinear two state engine
model for idle speed control. We will obtain cell-state
transitions from the above model in order to derive fuzzy
logic control rules that stabilize and regulate the state
trajectories toward the goal state, and in our case, the goal is
N = x; = 7500 (rpm), P = x2 = 34.0 (kPascal). It is noted that
L' = Lu in the state trajectories where the interval of Xu is
750.0+166.67/2, and that of Xz is 34.0+15.0/2.

Cell-State Transitions: As in Step 1, we gathered 9 kinds of
the complete state trajectories by using 9 fixed controls from
(81,601) to (8363). Every initial state starting from the
representative positions in the cell-state space is collected for
the cell-state transition table. We can find an equilibrium cell
with fixed (83,82 = Uz in L* = Lis. The next step (Step 2)
is to find a chain of connections among the cells with the
assigned controls according to the chosen optimal strategy.
This procedure is the most important one in the design of
fuzzy logic controllers.

Results: The finalized 30 control rules are determined by using
the backward chaining algorithm in Figure 2 where only 10 of
them are shown. Ly is the root of N-ary tree in the backward
tracking search algorithm. In our example, 5 elements are
assigned to each cell, and the support of each membership
function has 7 elements, thus making 2 overlapping elements
(Step 3). In Figures 3-a and 3-b, the responses of the
minimum squared error (MSE) and the minimum control effort
(MCE) control results are shown with the inferred control
actions together. In Figure 3-b, (a) and (b) are the idle speed
control results for MSE and MCE, respectively, while (c) and
(d) represents the throttle angles for MSE and MCE.

4. Conclusions

With a two-input two-output multivariable fuzzy logic control
scheme for the automated design of a fuzzy controller rule
base, we can easily generalize the systematic procedure for a
m-input n-output nultivariable fuzzy control system. The
automated production design of fuzzy logic control rule bases
for different optimal control strategies and the associated
simulation results ensure versatility and flexibility of the
proposed cell-state transition method. Emphasis is placed
upon the fact that, for given arbitrary systems, we can make
fuzzy logic based control rule hases that stabilize the
closed-loop feedback control systems, and that the design
procedure is totally automated. Furthermore, the rules are
determined according to the chosen optimal strategy.
Numerical simulation results strongly suggest the automated
rule design of fuzzy logic controllers for uncertain dynamic
systems as a promising controller design paradigm for
intelligent control.
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