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Abstract. We look at the problem of defuzzification in
situations in which in addition to the usual fuzzy output of the
controller there exists some ancillary restriction on the
allowable defuzzified values. We provide two basic
approaches to address this problem. In the first approach we
enforce the restriction by selecting the defuzzified value
through a random experiment in which the values which have
nonzero probabilities are in the allowable region, this method
is based on the RAGE defuzzification procedure and makes
use of a nonmonotonic conjunction operator. The second
approach which in the spirit of the commonly used methods,
a kind of expected value, converts the problem to a constraint
optimization problem.

Introeduction

Defuzzification, one of the most important issues in
applications of fuzzy logic control, is associated with the
selection of a crisp element based on advise contained in a
fuzzy set. In previous papers related to the defuzzification
problem [1, 2] we have shown that the commonly used Center
of Areca (COA) and Mean of Maxima (MOM) methods of
defuzzification are only special cases of a more general
method. This more general method is based on the BAsic
Defuzzification Distribution (BADD) transformation, defining
a parameterized family of defuzzified values of a given fuzzy
set. In [3] we also developed a semilinear form called the
Semi LInear DEfuzzification method (SLIDE). The SLIDE
method of defuzzification is suitable for adaptively leamning,
using the algorithm of Kalman filtering, the appropriate
parameter, to be used for the system being built, from the
whole family of possible parameters .

In a fuzzy logic control system the output of the
knowledge base is a fuzzy subset F of the universe of
discourse of the output, the defuzzification process selects,
based upon this set F, a crisp value y* as the controller
output. Essentially the process used for the selection of y*
from F is some kind of weighted averaging method [1, 2}
using the membership grade of F as the basis of the weights.
As the current commercial success of fuzzy logic control
testifies this approach appears most reasonable.

Generally the defuzzification step is carried out in
environments in which all elements of the output universe of
discourse are allowable values for the crisp output y*. If no
restrictions or forbidden zones in the universe of discourse are
considered, the type of weighted averaging technique, such as
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COA or MOM, works well. In situations in which, in regards
to the output space, some kind of restrictions ancillary
constraints or forbidden zones exist this weighted averaging
techniques brake down. In {4] Pflugar, Yen & Langari very
dramatically illustrate the problem with the current averaging
type defuzzification techniques.

In this paper we investigate the problem of
defuzzification in the presence of restrictions on the allowed
defuzzified values. We also discuss a related issue, the
problem of defuzzification of nonunimodal fuzzy sets.

Defuzzification Under Constraints
Forbidden Zones

The problem of defuzzification becomes more
complicated if we consider the possibility that restrictions exist
in the sense that from the whole universe of discourse only
some values are allowed for the defuzzified value. This case
was captured by the robot example described by Pflugar, Yen
& Langari [4].

Suppose we have a fuzzy logic control (FLC)
knowledge base. Assume that the knowledge-base gives for a
particular input an output consisting of a fuzzy subset F of the
output universe of discourse X. The meaning of this fuzzy set

F is that for each value x € X F(x) indicated the degree to
which the rule base recommends x as the control value. As
we described in the previous section this information, the
fuzzy subset F, is used to to obtain a crisp control value y*.

In addition we shall consider that our problem has
some restrictions on the allowable defuzzified values. The
allowed defuzzified values can be expressed as another fuzzy
subset H of X. In this case H(x) indicates the degree to which
x is an allowed value.from the defuzzification process.

In this paper we don't discuss the nature of the
allowable solutions. They can be defined from a technological
point of view - e. g. certain type of control actions cannot be
performed in a given setting. Allowable restrictions can be
also set on the basis of control strategy - ¢. g. to preserve the
control system from unallowable control actions. In some
cases the fuzzy subset of allowable restrictions H can be a
crisp set, defining a new discretization of the universe of
discourse X.

The problem of defuzzification under restriction
becomes one of selecting an element y* recommended by F
and also allowed by H.

and



Random Generation Defuzzification Under
Restrictions .

In [2] Yager & Filev suggest an alternative to the
expected value approach to the selection process. This
process is a selection of y* as the outcome generated by the
performance of a random experiment guided by P. We shall
call this process the RAndom GEneration (RAGE)
Defuzzification process to distinguish it from the expected
valued based approach we described above. We calculate the
probability distribution P(y;) = pj = F(y;) / Zj F(yj) associated
with output fuzzy set F. We shall assume without loss of
generality that the output space consists of n elements with
non-zero probability.

The RAGE defuzzification procedure is as follows:.

(1) We divide the unit interval into n intervals one for
each output value y;. We denote these intervals

R; = [a;j, bj] i=1,...,n
We define these R; as

a}=0;by1=py; aj=bj_1; by=a;+p; fori>1.

(2) We perform a random experiment generating a
random number r e [0, 1]

(3) Ifr e R then we use y* = y;.

As shown in [2] this method always results in y* being some
element for which p; # 0, ie. F(y;) = 0. It should also be
clear that this random approach doesn't result in a averaged
value for y*.

In the following we extend this idea to the environment
where there is some restriction on the allowable values for the
defuzzified value. We indicate the set of allowable output
values as H and use F to indicate the controller fuzzy output.

We recall that a fundamental property of the RAGE
method is that the defuzzified value y* is always one of the
elements that have non-zero probability. The RAGE output is
not an weighed average and as such it can easily provide a
framework for implementing defuzzification in restricted
environments.

A natural extension of the RAGE method appears to be
one in which we combine via a conjunction the sets F and H
and then use this new set to generate the probabilities to be
used in the RAGE defuzzification procedure. Care must be
taken in executing the requisite conjunction. If we take

G =HnNF
we are obtaining G as a desire to get a solution that is
allowable, non restricted, and reccommended by the controller.
Then of course

pi=G(x) / X; G(x)
Since p; # 0 if G(x;) # 0 we only get solutions that satisfy
both.
While this simple aggregation at first seems appearing
it has one dramatic drawback. Assume H and F are

completely conflicting then G = ®. In this case we would get

pi = I/n for all x; in the space. This means that we lost the
restriction information.

Any aggregation procedure for combining F and H
must keep the priority of the H. That is, it must not allow
under any circumstances the defuzzified value to be in the
forbidden region. In [5] Yager has introduced a new
aggregation operator called the nonmonotonic conjunction
which has the required priority condition.

Assume H and F are two fuzzy subsets of X. Let

G=nH, P
where

G(x) = H(x) A (F(x) v (1 — Poss(FIH))).
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We recall :
Poss(FIH) = Maxx[F(x) A H(x)].
We note that if F and H have at least one element in
common with membership grade one, Poss(FiH) = 1, then
G(x) = H(x) A F(x)
which is the usual intersection, G = H N F. At the other

extreme if F ~ H = ®, then Poss[FIH] = 0 and

G(x) = H(x).
Thus when the suggestion of the controller is in complete
conflict with the restriction we use the restriction. We notice
in this case of complete conflict if H is a crisp subset then

px) = ‘_LCa: i)
for all elements x € H and p(x) = 0 for all others.
We note that we can provide a more general
formulation for the nonmonotonic intersection as
G(x) = H(x) A S(F(x), 1 - Poss(FIH))
where S is any t-conorm [6, 7].
‘We sec that the RAGE method of defuzzification under
restriction consists of the following process.
Algorithm 1.
1. Aggregate the allowable region with the controller
suggestion
G=nH, P
2. Normalize G to get the probabilities of the elements
in the output space

P(x;) = G(x;) / Zj G(x)
3. Use P(x;) to randomly select an element.

Defuzzification by Constrained
Optimization

The common methods used for defuzzification, COA
and MOM, are based finding the expected value of a
probability distribution over the output base set. The
probability distribution used is obtained from the fuzzy output
of the controller. As described by Filev & Yager [1] the
difference between these two methods, COA and MOM, lies
in the procedure used to obtain the probability distributions
from the fuzzy sets. In [1] it is shown that with the aid of the
BADD transformation we can obtain COA and MOM as
special cases by simply adjusting one parameter denoted c.

With this understanding we can view these methods as
the same type, finding the defuzzified value as an expected
value. It should be strongly emphasized that the process of
obtaining the expected value can be seen as an optimization
problem.

We shall now consider the extension of the expected
value based method to the problem of defuzzification under
constraints. We shall assume that the fuzzy set F is the output
of the fuzzy controller, it is a measure of the appropriateness
of an element x as a solution, and that the fuzzy set H is the

allowable region. We define

G=FnH
We see G satisfies the criteria of being an good solution, F,
and an allowable solution, H.

We shall now formulate the problem of defuzzification
under restriction as a constrained nonlinear programming
problem. As an optimization criterion we shall consider the
requirement of minimization of the mean square of the error
between the values of universe of discourse of G and the
defuzzified value dg. For the most generality we assume that
the probabilities of the elements of the base set, the pi's.
defined by the BADD transformation {1] from the set G,



pi=<B— . i=(lm.
2

jm=1
The probability di:;u'ib:nions generated above for different o0 >
0, are related to the membership function G. We select o to
indicate the type of defuzzification we are using.
Then the criterion for a selected o has the form:

] o
MIN Y, (x;- dp>-Bi-
“~
i Z gjq
=
The problem is to find dg to minimize above equation. We

note that if o = 1 we are using a COA type method and if o is
infinity then we arz using a MOM type method.

We shall also include a constraint on this problem. The
constraint we need is one which assures us the the defuzzified
value lies in the allowable region. We shall accomplish this
by requiring that H(dg) is larger then some threshold value,
tg.

Then defuzzification problem under allowable region
restrictions is representable as the following constrained
nonlinear programming problem:

Find the value dg that Minimizes

> (xi-

i=1

gg
dg)z—n—‘—* I.
28
j=1
Subject to
H(dg) 2ig I

for a given o 2 0 and tg e (0, 1]. We note that o is fixed, the
choice of & depends on issues discussed in [2]. The choice of
tg is fixed and it depends on how we define what it means to
be contained in a fuzzy set. If H is crisp then any tg > 0
works the same.

We see that the objective function can be expressed as
follows

Z (x; -

i=1

s)z_“‘

e

n o =1 n o n o
R R YR S L) YT SN |
i=1 Z ga i=1 2 g] i=1 2 g"

j=1

The ﬁr;t two terms are posmve and funcnonally independent
on dg The third term is also positive but depends on dg, thus
its minimum determines the minimum of the objective
function. For an unconstrained dg, the problem without
condition II, the minimum coincides with dg being the
generalized defuzzified value via BADD:

n
=Y x; nsf‘
=X
j=1
For the constrained defuzzification problem the
minimum is obtained for those dg, that satisfy Il and minimize

L] o
the third term on the right side of I', (Z X —n-g—l—— - dg)z.

i=1 2 g}).
=1
Equivalently we can use as our objective function
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|i xl;gs:— - dgl
= Zg,

Thus the solutlon of the constrained linear
programming problem is obtained as those feasible dg,
satisfying II, that are at a minimal distance from the
generalized BADD defuzzified value(unconstrained solution)
dg:

II1.

]
i=1 Z gu

This formulation of the solution of the restricted
defuzzification problem has the advantage that it doesn't
require the membership function G(x) to have an analytical
expression. It is enough to select only those xj, characterized
with membership grade equal or greater than the threshold tg
and to pick up the one, that is closest to the generalized BADD
defuzzified value for the selected o.. For o — 0 we receive by
an arithmetic mean - like defuzzified value, for o= 1 - a COA
- like defuzzified value, for & — « - a MOM - like
defuzzified value.

The simplified solution of the constrained nonlinear
programming problem is summarized in the following
algorithm.

Algorithm 2 (Solution for fixed a and zg).

1. Calculate:

n
dg = z X Tgf_._
is=1 Z g?.
j=1
2. Select all xj, i = (1, n) with membership grade H(x;)
2 tg and form the set of indices:
Ig={i: Hxp=2 tg}
3. Find x* such that:
Idg - x* = Minje 1, g - xjl
4. Set defuzzified value to x*:
dg= x*
The algorithm works for fixed & and tg. This means that the
threshold has to be specified. Fortg=0 defuzzified problem

becomes unconstrained. The predetermined value of o
defines the type of defuzzified value.

Example. Let consider fuzzy set F with membership
function F(x), defined as follows:

F(x) = (0/1, 372, .5/3, .9/4, 1/5, 1/6, 177, .9/8, .8/9, .9/10,
1711, 1/12, 1/13, 1/14, 1/15, .9/16, .8/17, .8/18, .5/19, 0/20)
and fuzzy set of allowable restrictions H with membership
function H(x):

H(x) = (0/1, 212, .4/3, .6/4, .8/5, .8/6, 0/7, 0/8, .8/9, .7/10,
0/11, 0/12, .8/13, .8/14, .8/15, .8/16, .7/17, .6/18, .1/19,
0/20)

The intersection of H and F gives us

G(x) = (0/1, .2/2, Af3, .6/4, .8/5, .8/6, 0/7, 0/8, .89, .7/10,
0/11, 0712, .8/13, .8/14, .8/15, .8/16, .7/17, .6/18, .1/19,
0/20)

The generalized defuzzified value of fuzzy set G, without
constraints on the membership grade, i.e. tg =0 is for

different o as follows:
o 0 1 30
d; 10.78 11.01 1L15



These values of dj are not from the set of allowable values.

If tg = 0 we obtain dg = dg. For tg = 0.2, the candidates for
dg according Algorithm 1 are the following values of x; (with
membership grade H(x;) = 0.2): -

2,3,4,5,6,9, 10, 13, 14, 15, 16, 17, 1
and consequently the set I, is:

Ih=12,3,4,5,6,9, 10, 13, 14, 15, 16, 17, 18}
Because the distance |dg - 10! is minimal for o =0; 0= 1; & =
30, then

dg=10
is the arithmetic mean - like, the COA - like and the MOM -
like defuzzified value of fuzzy set G.
If tg = 0.8, the candidates for dg are the following values of x;
(with membership H(x;) 2 0.8):

Ig=1{5,6,9, 13, 14, 15, 16}

Since for &= 0 dg = 10.78 the closest element in Iy for o= 0
is 9, thus the arithmetic mean-like defuzzified value of fuzzy
set G is dg =9,

Fora=1 d; = 11.01 the closest of the candidates for ot = 1 is
11 and since for o = 30 d'g = 11.15 then again 11 is the
closest of the candidates. Thus the COA-like and the MOM-
like defuzzified values of fuzzy set G coincide at dg =1L

The result of defuzzification is depicted on Fig.

G(x)

4
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3

0 4 B 12 N 20 X
o=0; t=0.8 o=1:30; =08 o=0;1:30 ;=02

Figure 1 Defuzzification of Fuzzy set G

It is possible that in some cases two of the candidate
values in I are equidistant from d;. This situation indicates
two completely equivalent. The only possibility is to
randomly pick one of these alternatives. This is in fact a
combination of Algorithm 1 with the defuzzification by the
RAGE method. Another approach, that is out of the scope of
this paper, should be the eventual extension of the rule-base to
assigning preference to one of equivalent alternatives by some
ancillary conditions. For example in the case of fuzzy
controller priority may be given to the solution, associated
with the least value of control variable as means of reducing
energy.

Conclusion

A pew extension of the defuzzification procedure in the
presence of restrictions, important for the practical application
of fuzzy systems, was discussed in this paper. Two
alternative approaches to defuzzification under restriction were
proposed. The first is based on the concept of defuzzification
by random experiment, RAGE defuzzification. The second
one leads to a constrained nonlinear programming problem.
An efficient algorithm, simplifying the solution of the
nonlinear programming problem was proposed.
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