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Abstract

The objective of this paper is to provide fuzzy control
designers with a design tool for stable fuzzy logic con-
trollers. Given multiple sets of data disturbed by vagueness
uncertainty, we generate the implicative rules that guaran-
tee stability and robustness of closed-loop fuzzy dynamic
systems. We propose the cell-state transition method
which utilizes Hsu’s cell-to-cell mapping concept [1]. Asa
result, a generic and implementable design methodology
for obtaining a fuzzy feedback gain K, a fuzzy hypercube
[2], is provided and illustrated with simple examples.

1 Introduction

Fuzzy logic control has been cast by many investigators as an expert
system paradigm where human-like intelligence may be adopted and ap-
plied to some complex systems. This fuzzy logic artificial intelligence
setting adjusts controller parameters or membership functions based on
specified performance characteristics. We introduce a systematic de-
sign procedure for stabilizable fuzzy linguistic controllers. This method
can be applied to a class of nonlinear systems which suffer from vague-
ness uncertainty.

One approach is to divide the uncertain objects or domains into a
finite number of manageable quantities and to assign fuzzy sets to each
linguistic represention; then, the relations that govern the control objec-
tives may be obtained. Thus, we are dealing with quantitative objects of
an infinite point space in terms of qualitative reasoning of finite rules. In
this paper, the objects are the vector fields of the invariant manifolds or
the switching manifolds in a hyperspace. We gather these data so that
a controller based on the fuzzy set theoretic technique can be obtained.

Since fuzzy set theory inc{udes binary set theory [3], it is more con-
venient to design and analyze fuzzy logic control systems on the basis of
classical control theoretic techniques, and to map the appropriate crisp
domains into corresponding fuzzy sets [4,5]. However, heuristics still
take part in the design of fuzzy logic controllers, if a priori knowledge of
the process is incomplete [6]. Especially, the size of a quantized subspace
is another heuristic design parameter. Here, a cell-group is defined as
a collection of quantized cells or elements which result from the a-cut
of the corresponding fuzzy set. (for example, @ = 0.5). The cell-to-cell
mapping concept in fuzzy logic has already been investigated and ana-
lyzed in {7]. We adopt and enhance this cell-state mapping technique so
as to design the membership functions of a fuzzy controller for stabiliz-
ing a closed-loop fuzzy dynamic system. Our design technique has the
following characteristics:

e Design of Scheduling in Crisp Domain = Fuzzification

e Control Rules as Cell-State Transitions

e Fuzzy Optimal Strategies (Min. Energy, Min. Squared Error,
Min. Time, or Combined One)

e Use of Fuzzy Hypercubes (Multivariable/Multilayered FAM)

2 Fuzzy Dynamic Systems (FDS)
2.1 Dynamic Behavior of FDS

The primary objective of this section is to describe the dynamic behavior

of discrete-time single-input single-output (SISO) fuzzy dynamic systems

FDS) and to show how to design a fuzzy logic controller with stability.
FDS can be represented in terms of a number of rules, such as

IF (‘Input ri’ IS POSITIVE SMALL) AND (‘State
zx’ IS NEGATIVE LARGE) THEN ‘State zx4,’ IS
NEGATIVE LARGE.

where the subscript k& denotes the time step. The block diagram of
a fuzzy dynamic control system is shown in Figure 1. The rules are
disjunctive with one another. zx41 is inherently hidden inside the block

of a FDS together with the one-step shift operator z~! which is defined

as ok = 2 zgy;. A SISO FDS consists of a one-step time delay and a
rulebase that deals with its dynamic state. In order to design a fuzsy
logic controller, let us first consider a homogeneous fuzzy system without
the input ry.

A homogeneous FDS is expressed in the form [8]:

z0€ X. (1)

where o is the max-min operator and A is a square fuszy relational
matrix. In fact, ux is a fuzzy variable in the rulebase of the above FDS,
and zj is defined as a fuzzy vector in X, a family of fuzzy subsets. Now,
a fuzzy subset L is defined as

Tk41 = Aoz

L={(ue,pe(u))lux €U, LE X}, 74 2 pp(uk) (2)

where U is the universe of discourse for the variable u;. Each fuzzy
subset L is associated with a linguistic element in 7%, a set of linguis-
tic terms for x4 representing the vagueness uncertainty. Therefore, the
function jur (-} determines the membership of uy, i.e., the shape and lo-
cation of zx in X'. For example, zy ==‘u;is Medium’ may be denoted as
follows:

z =00 0206 106 02 0] (3)

Each element in z; implies the degree of membership at the associated
representative point in U. Fuzzification deals with quantization and
assignment of a degree of membership for each quantized element. Again,
asymptotic stability is addressed by considering

zx=Aozp_) =---=A*ox, (4)

where AF is defined as a series of max-min operation

A* = Acdo--.cA4 (5)
—k A's —

The homageneous FDS, Zk+) = Ao xi, can be obtained by eliminating
the input ry in Figure 1. A linguistic representation of a single-premise
single-consequence {SPSC) fuzzy relation can be described as

IF u, IS POSITIVE LARGE, THEN vy, IS NEGA-
TIVE SMALL.

where % = pupp (ug); vl ¥ = pns(v); and PL, NS stand for ‘POS-

ITIVE LARGE’ and ‘NEGATIVE SMALL’, respectively. Note that
Up = tgyy. This system becomes the FDS él) when a deray is inserted
between x) and yx so that yp = zx,; holds. If y, = Zk41, linguistic
connections within the rules can describe the dynamic behavior of the
fuzzy system (1). For example, if there exists a positive integer n such
that A"*1 = A" then we can say that x4 settles to a steady-state fuzzy
vector To,.

. The fuzzy relational matrix A is determined in terms of the rules de-
scribing the system’s dynamic behavior. Let ®, & denote the minimum
and maximum operators, respectively, then A is obtained according to

A=l {y"" @ =T} (6)

where y%¥ is the consequence fuzzy vector for the membership function
of th? i-th rule {for vz}, and zL%T s the transpose of the associated
premise fuzzy vector for the i-th rule (for u,).

EXAMPLE 2.1: Let us consider two rules that govern the homoge-
neous FDS in (1):

RULE NO.1: IF uy is PL THEN ugy; is NL.

RULE NO.2: IF uy is NL THEN wu,; is PL.

If we choose 2™ = [0 0.2 0.5 0.8 1.0]7 and 'L = [1.0 0.8 0.5 0.2 0T
then the A matrix can be represented az

A = (yNLl ® xPL;T) ® (yPL; ® zNL:T)
0 02 05 08 1.0
0.2 02 05 08 0.8
= 0.5 0.5 05 05 05 (7)
0.8 08 05 02 0.2
1.0 0.8 05 02 0
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Let the initial fuzsy vector be zo = [0 0.3 0.5 0.7 1.0, then the
subsequent zi's are obtained using the max-min operations:

z; = Aoze=[L0 0.8 0.5 0.5 0.5|T
z; = Aoz =[05 05 05 0.8 1.0]T
z3 = Aoz,;=[1008 05 05 057
z4 = -

In this example, zx oscillates with a period of T = 2 and note that
A¥+2 = AF  Therefore, this FDS can emulate periodic responses as in
crystal oscillators. O

In Example 2.1, it is shown that this simple FDS can generate oscillat-
ing waveforms. This fuzzy relation can be sought in the structure of the
linguistic rules and their membership functions. Linguistic memberships
may be regarded as nodes, and the relational matrix, in a fuzzy sense,
results from transitions from one such node to another. In brief, these
linguistic membership transitions govern the behavior of a FDS in
an oscillatory, underdamped, overdamped, or even unstable mode. Ev-
ery rule in the control knowledge base is a state transition from one
membership (cell-group) to another.

EXAMPLE 2.2: Let a fuzzy logic controller have three rules, R(i)
through R(iii):

R(i):  (apf) = (vE%).

R{ii): (zgw = y%E.

Rii):  (2{®) = (s{®). (})
where => denotes the ‘IF-THEN’ implication, z,f" stands for ‘ux IS
POSITIVE LARGE’, yZ¥ abbreviates the expression ‘vx IS ZERO’,
and 7L represents ‘ux IS NEGATIVE LARGE'. Let the universe of

discourse have nine elements and let the membership functions (fuzzy
vectors) be denoted as follows:

zfl = [pooooooos 1T
«Z2 = 000051050007
ot = (1050000000

The graphical representation is shown in Figure 2. Note that the tran-
sition is a stable equilibrium condition for invariant manifolds of
differential dynamic systems. Let us consider the output of the homoge-

neous FDS.
CASE) Let the initial condition zo be

2 =[(05105000000T

then the subsequent z;’s are obtained by applying the max-min opera-
tion

z;, = Aoz =[000050505000T
z; = Aoz =12

and it is easy to recognize that ug = O for k > 1 as the steady-state
value of defuzzification. O3

2.2 Cell-State Transition Method via a-Cut Cell-
Groups

As we discussed in the previous section, the membership transitions are
equivalent to the cell-state transitions if we consider ‘mutually exclusive’
cell-groups via a-cuts or other in-between cuts. Hsu’s cell-to-cell map-
ping concept [1] is utilized here to show how arbitrary initial states are
forced to move towards the desired goal state. Preliminary analysis of the
cell-state mapping theory has been given in [7]. We investigate more de-
tailed relationship between transitions in the cell-state space and rules in
a fuzzy hypercube [2]. For convenience, we will simplify the quantization
and fuzziness of the membership functions by utilizing a-cut cell-groups.

In our case, the membership values of z£* and y,f‘" are to be reduced
to bold 1’s in the matrix A, if the grades of both membership functions
exceed the same o {for example a = 0.5). When choosing o, a larger
implies that emphasis is placed on mutual exclusiveness. On the other
hand, we take the membership values as bold zeros, 0, if the grades are
less than the chosen a. For example, a fuzzy vector given as

2l =[0000 0204 06 08 1T
can be written, with a = 0.5, as
Zfl=po00000 111

which can be regarded as making a crisp set out of a fuzzy set, as an
a-cut [9]. The above characteristic function 5 * may be further reduced
to

2t =00 1|7

by grouping two ‘three zeros’ and one ‘three ones’. Bold ones or zeros

represent cell-groups.
Consider the following seven rules that represent an underdamped

case for FDS’s:

R{1): (z?) = (y7").

R(2):  (z,7*) = (yé")-

R(3): (z,i") = (gkl)‘

R(4): (zi') = (yp 7).

RE): (o) = (yt).

RE): (o) = ()

R(T: (&) = (%°) (%
Each rule constitutes a cell-state transition of a cell-to-cell mapping d
fined by F(Z) in [7]. As shown in Figure 3, the dynamic respl;lr)xsegofe;
cell z; € Z moves to another cell 2; € Z under the map F within time
At. Again, rule R(7) is a rule of state invariance (*), and the dynam-
ics of this fuzsy system reveal oscillatory responses with an asymptotic

behavior. The membership transitions usin i
e 1 g the a-cuts are shown in
Figure 4, and the matrix A is obtained as

0 0 0 0 o0 o0 o
0 0 0 o0 o0 o 1
0 0 0 0 o0 14 6
0 " 5

0

A= $"7:1A| == 0 1 5) 1 1 6) 0 8
lg;) b b 0 0 (®)

162) o] 0 (1] 4] 0

(o] 4] 0 0 [¢] 0

where the subscripts in the boldface notation 1 denote the rule number
Let us treat these boldface 1’s and 0’s as regular numbers for the s:ké
of simplicity.

CASES) Let the initial fuzzy vector z( be

zo=[0000005 1T

where 0.5 denotes a cell-group consisting of those cells whose grade of
membership is less than o and greater than g (f < a). Then, the
subsequent z’s are ’

1 = Aozo=[0105000 07
3 = Aoz;=[000051007
3 = Aoz;=[0001000T
24 = Aoz = zj.

Therefore, the FDS has reached a steady-state vector, and a steady-state
value ug = O after defuzzification. Note that z4 = A* 0 z5. The defuzzi-
fied values of z; exhibit an underdamped response. it is obvious that
A% = A® and the matrix A® has 1’s in the 4-th row and 0’s elsewhere.
This matrix plays an important role in the stability analysis of mem-
bership transitions in FD$’s. In general, there exists a positive integer
k such that 4*+! = A* and the k-th max-min power of the A matrix
becomes the same a-cut pattern (1's in the middle row) for every FDS
with asymptotic stability. Now we consi 1 1

order toydescribe a class}:)f FDS’s in ger;sé;i:lr: the following theorems in

THEOREM 2.1: A homogeneous FDS is asyrptotically stable with

respect to an equilibrium membership vector z, if and only if there ex-

ists (an invariant membership transition (invariance rule), ‘IF z, THEN

z.' (or ‘z. == z.’ in shorthand), and ther ist itive i

z.! lor "z e ) e exist positive integers k, koo
k> ko,

holds for all initial membership vectors z5. We define A4F = Ao ... o A
as the fuzzy transition operator.

_IHEO.R‘EI\_'L_LQ: A homogeneous FDS is periodic with period T (T
18 a positive integer) if and only if there exists a fuzzy transition operator
AT such that

k
Aoz =z,

AToz =2z & AR = A4%+T

are satisfied for all £ > 0 and for some membership vector z. (3

EXAMPLE 2.3: An oscillatory FDS may be described using four rules
of membership transition. In this example, there are four quantized cell-
groups (lingwistically Lz, L_q, L, LS under consideration.

R(1):  (z57') = (y&).

RQ): (o) = ()

RE): (o) = ().

R(4): (z7") = (v 7*)
The a-cut patterns in A are obtained as

018)00

ot o 0 0 14
A=@li4=11, 0o o §
8 o 2y O

For. any initial membership vectors, A has the following property for a
period of T = 4: A* oz =1z, Vr& X and A*** = A% Vk > 0. The
graphical representation of the cell-state transitions in Example 2.3 is
shown in Figure 5.
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EXAMPLE 2.4: Now let us examine another FDS with asymp!
stability. The state is decomposed into seven quantized cell-groups. Cell-
state transitions between the seven cell-groups constitute the following

seven rules:

R):  (g7) = (v

RE): (=) = (57)

RO (o) = ()

RE: (o) = ().

RG: (o) = ()

RE: () = ()

R(T): (%) = (w°): *)

= . Note that, without rule R(7), the particular

(\:’Zﬁ-a;i‘t:;er?;;z’;tin? é .cl:rgnot. guarantee a.sympto(tiZ: stability, and,
therefore, no dynamic description is possible for Lo. The above rules are

shown as cell-state transitions in Figure 6.
Using a-cut patterns, A can be represented as

L_;).

o o o o ©0o o0 0
1y 0 o0 o0 0 0 O
b L o 0 0 0 g
=@l Ai=1 0 13 1 Lo O
A=0l_, A @ 1 e 1) 10

o 0
o o 0 0 0 o
0o o o 0 0 O

and similarly, after four max-min operations, we obtain

(9)

>
-
i
»
w
|
cocor~O0OO
coo~oOO0O
cooroOO
cooROOO
coomOoOO
coormooO
cocoroOoO

and 24 =23 =0 0 0 1 0 0 07 resulting in u3 =0. O

Of course, in Example 2.4, the behavior of the over-damped FDS
can be made faster if the elements of A directly show the same pattern
as in (9). However, the a-cut method is an extremely simplified method
to demonstrate how a particular fuzzy dynamic system changes its state
as the time step increases. It is also viewed as a mutually exclusive
case of complexity in a fuzzy system according to Zadeh’s explanation of
‘complexity’ as ‘the principle of incompatibility’ [10]. What interests us
is that vagueness uncertainty in FDS’s can be handled via overlapping
mutually exclusive cell-groups in an excellent and smooth manner.

2.3 Stability of Fuzzy Dynamic Systems: SISO

In this section, we continue our design procedure by augmenting a control
input vk to a homogeneous FDS described in the previous section. Again,
the a-cuts are used for the sake of simplicity. The block diagram of
a SISO fuzzy feedback control system is shown in Figure 1 where the
feedback matrix K is introduced so that the closed-loop feedback system
can be made stable. The objective of this section is to derive a fuzzy
relation K that stabilizes our SISO FDS in Figure 1. The procedure for
synthesizing K is summarized as follows:

e First, choose representative constant values v for -, that exhibit
every dynamic behavior of A. The membership vector for « is r
and is obtained from appropriate quantization. Assign the corre-
sponding subscript v for A = A,.

e Second, slices of the matrices A, constitute a fuzzy hypercube of
dimension 3, P, and the feedback matrix K includes rules of the
following form:

K;: IF z;*, THEN r*
Ky: IF z*, THEN r}

where L; and U; are the :-th linguistic terms for z, and ry, respec-
tively. The desired matrix A* is chosen so that asymptotic stabil-
ity is satisfied using the fuzzy relational matrices A,’s. Hence, K
is obtained from v LT

K=a:{r) @07} (10)
The desired matrix A* is found via selection of an invariance rule and
membership transition with the property of asymptotic stability, as dis-
cussed in the previous section. The following example shows how to
design a fuzzy feedback K based on the above considerations.

EXAMPLE 2.5; Let a single-link telerobot arm be attached to the
space shuttle as shown in Figure 7. The angle of the link with respect
to the vertical axis is defined as the membership vector zx. The zero
angle is, in a furzy vector form, zx = [0 0 1 0 0]T. In the uni-
verse of discourse, the representative values for each interval of ug are
[—30°, —15°,0°,15°,30°]. The dynamic behavior of the telerobot arm is
described with 3 available control torque values vy = —1,0,1 as follows:

o 7= zp41 = A0z (cf. Zpq1 = flzx, —1)).
010 O 0
001 0 0 1
A =]000 1, o0 a_lo
0 0 0 0 1'2) 0
0 00 b

o 7=0: zTp41 = Ao © Zk

10 0 OO
00 O 00 v 0
Ap=|0 0 17, 0 0 o= |1
00 i), 00 0
00 0 01
o y=1: g4 = A1 0oz (cf. zxt1 = Flzx, 1))
0 0O 000
1ry, 0 00O 0
A= 6 1, 0 00 Pr=10
0 ﬁ) 100 1
0 0o 010

The desired matrix A* consists of 1*’s among the matrices A_;, Ao, 4;:

0 ] 0 0 0
i, 0 0 0 0
At = 0 1 1y 19) 0 (11)
o 0 0 1
0 0 0 0 E)
and therefore A* forms a homogeneous FDS with asymptotic stabil-
ity and overdamped characteristics. The linguistic terms for zx are

-2, L_y, Lo, Ly, La}. . . .
The fuzzy feedback relational matrix K is obtained from the sub-
script (i) in 17, that is also the index of the following rules:

U-

K;: zf‘ =7, "
U_

Ka: z,lc" =>r "
Ks: zf“ = r,[c]“.
Ko 270 =
: z) .

R 2 Uy
Kg: z 7t => gt

Therefore, K is computed as
v LT 00011 (12)
K= {sU LT Ui gl Ty =10 0 1 0 O 12
tr &= re {r } 11000

and the membership vector of the control torque rj, is obtained from the
max-min operation

re = Koazx (13)
and finally a crisp value is derived from
+x = DEFUZZIFIER(rx) (14)

where DEFUZZIFIER(:) is chosen from such defuzzification strategies as
the maximum criterion, the mean of maxima procedure, and the centroid
algorithm.

Let the initial condition for zx be zo = [1 0 0 0 0], then the
control ry is obtained via the max-min operation

cooor
Il
——=

00 0 11
7'0=K°10= 00100 o
11 000

and the next membership vector z; is
gy =Polz®rg)=10100 0.
In the next step, r; is computed as
rn=Koz,=[00 I]T
and z3 is calculated from
z23=Po(z;®r)=1[0010 0

After subsequent calculations, we conclude that z; = z and the angle
of the telerobot arm converges to zero asymptotically. O

3 Conclusions

We address the cell-state transition method which is a generalized
approach to the design of fuzzy dynamic controllers. Stability is auto-
matically treated in the design procedure of membership functions in the
rulebase. With the examples, it is demonstrated that a fuzzy hypercube
can be applied to stabilize the closed-loop fuzzy dynamic contro{systems
via the cell-state transition method. Each rule in a hypercubic controller
K constitutes a cell-state transition which forces any state trajectories
to follow the predetermined path toward the goal state.
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Figure 1: Fuzzy Dynamic Control System
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Figure 2: Membership Transitions of x4 =

(7
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Figure 3: A Cell-State Transition from z) to 23 in Z
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Figure 4: 7 Membership Transitions of z;; =

Aoz

Figure 6: Seven Membership Transitions for Example 3.4
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SPACE SHUTTLE

Figure 7: A Single-Link Telerobot Arm on A Space Shuttle
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