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APPLICATION OF A FUZZY EXPERT MODEL FOR POWER SYSTEM PROTECTION

Proposal for a synergetic detection of low current faults
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ABSTRACT-The objective of this paper is to develop a
fuzzy logic based decision-making system to detect low
current faults using multiple detection algorithms. This fuzzy
system utilizes a fuzzy expert model which executes an
operation without complicated mathematical models. This
fuzzy system decides the performance weights of the
detection algorithms. The weights and the turnouts of the
detection algorithms discriminate faults from normal events.
This system can also be a generic group decision-making tool

for other areas of power system protection.

I. Power System Protection and Low Current Faults

Power system protection is an area of electric power
system engineering involving the protection of equipment,
crew members, and the public. Overcurrent relaying is a
protection: scheme that focuses on the level of current or
voltage to decide system status, "normal” or "fault.” When
the current level is above a certain threshold, the simple logic
in the protective device separates the endangered portion
from the healthy area of power network. While the function
of overcurrent relaying is essential, it has significant
limitations.

Overcurrent relaying cannot detect a fault which draws
fault currents below the threshold of protective devices.
Such low current faults may be caused by a downed

conductor on the ground or in contact with a grounded object.
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Arcing is often associated with these low current faults,
which may result in a fire hazard and personal injury. The
fault current characterized by an arc is variable, transitory,
and random in its behavior. The amplitude of harmonic
component of the arc currents is large in some faults, but
sometimes it is very low, similar to the level of the normat
state[1]. On surfaces such as grass, asphalt, and concrete, the
behavior of faults can be very similar to the phenomenon of
switching events. Hence, the detection and discrimination of
the low current faults from switching events and the normal

states is a complex problem [2].

IL. Discrimination of Low Current Faults

The discrimination of faults from these normal events
determines to a large extent the balance between security and
sensitivity fér a distribution protection system. Utilities
representatives have stressed that one of their main concerns
is the minimization of false detection. The reason for this
position is that, while energized downed conductors are a
public safety hazard, frequent unnecessary service
interruptions can pose safety problems of their own.

Many detection algorithms have been proposed for
dealing with the low current faults[3 - 5], however, a
complete solution has not been found. The performance of
each algorithm is very much affected by the surrounding
conditions such as ground surface types and unbalance of the
three phase currents. However, determining the surrounding

environment cannot be done by any exact method.
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In the last few years research intensified on this

discrimination problem([6, 7]. The present conclusion is that

no single detection algorithm can detect the majority of low
current faults and discriminate them from the normal
switching events. However, a combination of several
algorithms may be used to discriminate and detect a
significant percentage of the faults.

This paper provides a formal method to implement a

combined set of detection algorithms, while including not

well defined affecting factors to the detection algorithms, as a

synergetic detection using fuzzy expert model[8].

III. A Fuzzy Expert Model

A fuzzy expert model assigns performance weights to the
detection algorithms based upon their responses to different
environments. Then it combines the performance weights
and turnouts of the algorithms. This combined property is
the element to decide the status of the power line. The
development step and the operation of the fuzzy expert model
follow.
A. Algorithm Analysis

The first work for the development of the fuzzy expert
model is to select reliable detection algorithms which can be
programmed into a microcomputer system. The next work is
to define the environmental influences. These influences
increase or decrease the fault current and suppress some
harmonic components. The authors hold vast amount of the
staged fault test data performed in different areas of this
country over a decade. This data tells general tendency of
the performance of the detection algorithms in the various
situations.

B. Rule Formation

The initial analysis on the detection algorithms and the
environmental influences will provide a relationship between
the environmental inputs and the performance of the
detection algorithms. This information will result in the rules
on the performance weights of the detection algorithm. In
this step, membership functions must be defined, too. The

next step of work is to combine the detection algorithms'

turnouts and the performance weights. Each turnout is
multiplied to a corresponding performance weight. Then, is
the formation of a textual rules to move up or down the Scale
with combed properties of the current time and the next.
C. Rule Tuning

Once fuzzy expert model is developed after checking and
debugging, it is necessary to tune it to meet the
discrimination purpose. The tuning efforts focus on the
minimization of the false identification and the maximization

of the correct identification. The staged fault test data can be

‘used in the tuning process. If there is contradictory in the

changes of the rules for the fuzzy systems execution, the
security issue has higher priority than-the sensitivity issue.

D. Operation of the Fuzzy Expert Model

The operation of the fuzzy expert model is designed with
two stages of rule execution: the weight derivation rule and
the decision rule. The output is the Scale indicating the
power line status. Figure 1 is the illustration of the two-
stage operation of the fuzzy expert model. The detailed
explanation on two stages of the fuzzy expert model follows

in the next two chapter.
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Figure 1. The two-stage operation of the fuzzy expert model.

IV. Performance Weight Derivation
A. Environmental Influence
A well-known fact is that the amount of fault current
induced in contact with any material is negative proportional

to the resistance of the material. The environmental
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influences also include the following variables: the degree of
power system unbalance; harmonic noise generated by
devices like arc Welders; capacitor bank connected to a power
feeder for power factor compensation.

Therefore, four environmental influences as inputs to the
system are: Ground, Phase, Noise, Capacitor. The sensing
parameters for the four influences are resistance [W], sum of
3-phase currents [A], total harmonic distortion {THD%], and
size [KVA] of capacitor bank, respectively.

Then the input ranges are divided into linguistic
variables. Typical five ranges to describe the expected
values are: PB(Positive Big), PS(Positive Small), Z(Zero),
NS(Negative Small), and NB(Negative Big). Because there
are four inputs with different sensing variables, these typical
five ranges should be interpreted accordingly. Table 1
interprets each range of the different inputs. To get a
fuzzified value of the five ranges, triangular shape
membership function is selected for simplicity purpose.
Membership functions are generally grouped together

overlapping each other.

Table I. Derivation of the Environmental Input Range

GROUND CAPACITOR| NOISE PHASE
() (Kva) | (THD%) (A)
Extremely | Very Extremely | Extremely
PB| Resistive Big Noisy Unbalanced
PS Greatly Big Greatly Greatly

Resistive Noisy Unbalanced
7 | Significantly| Medium | Moderately | Moderately
Resistive Noisy Unbalanced
Ns| Moderately Small Slightly Slightly
Resistive Noisy Unbalanced
NB Slight.Iy Very Rarely Rarely
Resistive Small Noisy Unbalanced

B. Weight Derivation Rule

Next, the output should be decided. The output indicates
the amount of increase or decrease to the performance
weights. Again, the same five ranges can be used. They are
NB(Large Decrease ), NS(Small Decrease), Z(No Change),

PS(Small Increase), and PB(Large Increase).

As inputs and outputs are determined, the final step is to
develop the weight derivation rule. This rule generally is
quite simple and, in many cases, intuitive. Each detection
algorithm has a set of rules determining the amount of
increase or decrease of the performance weights with the
environmental inputs.

For each algorithm, four mutually independent sets of
rules are needed. And they are to be checked one at a time to
match and decide the final increase or decrease amount. As
passing through all the rules on all four inputs, the temporary
output varies with the amount of increase and decrease, and
finally reaches a point. Derived performance weights should

be adjusted so that the sum of all themis 1.0.

V. Decision-Making

A. Combined Property as Input

The performance weight is not a direct input to the
decision-making stage. Instead, the input to the decision-
making is obtained from the combination of the performance
weights and real-time information of the detection
algorithms’ turnouts of "fault" or "normal.” One of the
possible measures which decide the combined property, E.

may be expressed by the following equation:

for i=1, n.

where, w; and T; indicate the performance weight and
turnout of the algorithm i, respectively, and n indicates the
number of detection algorithms to be combined.

The power system has many cases of short and self-
ceasing transients which may look like low current faults,
therefore, an instantaneous decision based upon input at a
time may be resulted in false identification. Therefore, two
inputs to the decision-making are the two consecutive
combined properties, E¢ and En: E¢ is the combined property
at the current time, say t, and Ep is the combined property at
the next time, t+At (See Figure 1). The time interval, At, may
be a second or a few seconds. As time goes by the amount of

At, Ec is replace by Ep and new Ejp is calculated at the next
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time in a manner of moving window process.

The combined property input may be divided, similarly,
into five ranges. They are PB (Definitely Fault), PS(Maybe
Fault), Z(Not Known), NS(Maybe Not-Fault), and
NB(Definitely Not-Fault).

B. Decision Rule

If two inputs, Ec and Ep, are same, the output Scale
would stay where it was. If Ej moves positive direction
(which means to fault direction) from E¢, then the Scale
moves up to indicate the system status of abnormality. A
typical rule matrix for decision may be formed as shown in
Table II.

In the inference process, because of the overlapped
membership functions, one set of the combined property can
decide multiple output ranges. The center of gravity of the
overlapped outputs, or a centroid, is used to calculate crisp
output status{9]. If the defuzzified output reaches a certain
threshold level, thzn a corresponding signal will be generated
to indicate the power line status and, if desirable, it will

directly activate protective device or alarm.

Table II. A Typical Rule Matrix for Decision
c

E
gNlNB NS | z |pPs |PB

NE | 7z INS NS | NS [ NB

NS {PS | Z |NS INS |[NB

Z |PS |PS [ Z |INS |NB

PS IPB [PS [PS | Z |NS

PB |PB {PB [PB |PS Z

VI. Discussion and Conclusions
A fuzzy expert model application for power system
protection, particularly for the detection of low current faults,
is proposed. This proposed model has three major
contributions to the detection of the low current faults and
other areas of the power system protection. The first is that
this research provides a formal methodology, not in a

formula but in a hands-on linguistic form, to measure the

environmental influences to the detection algorithm. The

second significance is that it provides a synergetic detection
method with a fuzzy expert model using multiple detection
algorithms. The third one is that the decision-making stage is
based upon the time-moving fuzzy inputs in real-time base.
This model can also be a generic tool for other areas of
power system protection such as an adaptive computer

relaying.
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