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Abstract
Most of the today realized fuzzy logic control applications
has been designed using different heuristic approaches for

synthesis and  implemented  with conventional
programming languages  on general purpose
microcontrollers.

This paper aims to present a new methodology to design a
fuzzy controller. The methodology is based on the Cell-
to-Cell approach to extract the control law. A set of fuzzy
rules is then found by using a FAM (Fuzzy associative
memories) approach.

The proposed procedure was implemented to control the
rotor position of a DC motor.

Section 1 Introduction

The synthesis of a control process generally requires a
human expert who, on the basis of his heuristic
knowledge about the system establishes and, above all,
describes a control algorithm. In this way we obtain an
approximate control. To improve control performances

it's required a great effort to tune, in a heuristic way, the
membership functions defining the shape and the position

of each fuzzy set. This action can take a relatively long
time to be performed, representing in the majority of the
cases the most time consuming task in the whole design of
a fuzzy controller. For this reason the possibility of
automatically performing the synthesis and analysis of a
fuzzy controller becomes of particular interest in order to
obtain high performances while shorting the design cycle.

Starting from the consideration that fuzzy systems are non

linear systems, classical techniques available for analysis
and synthesis of linear systems cannot be employed. It
becomes therefore necessary to develop new methods that
allow to easily design fuzzy controllers.

Section 2 Cell-to-Cell approach.

The growing interest towards the dynamics of nonlinear
systems has driven the development of research methods
like Poincarre’s maps. This approach allows to study
complex nonlinear systems using a point-to-point
technique through a great number of integrations.
Poincarre’s maps allow to show typical aspects of
nonlinear systems, like chaotic phenomena, periodic
motions, etc., carrying out their importance in the
analysis on local ambit. The major limitation of this
technique is the impossibility to be used in a global
analysis of the systems, because of the great
computational burden resulting from a point-to-point
analysis. Moreover, the knowledge of the system model
and the inaccuracy of computational methods makes this

approach redundant. For these reasons it's far more
convenient an analysis approach like the Cell-to-Cell

Mapping, according to which a subdivision of the state
space in a finite numbers of cells is performed, and a
system structural analysis for each cell is carried out. In
this way, each state variable is considered like a collection

of a finite numbers of cells. Each point belonging to a cell
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is associated to the variations of the same cell. Let:

x(t) = F(t,x(t)) M
the mathematical model of the system, and x the state
vector. The coordinate axis of a state variable x; is
divided into a large number of intervals, with interval size
h;. Let Zi an integer that identifies the interval i. The
interval Z; of the xj-axis is defined to be the one which
contains all the x;'s satisfying the relation:

(Zi-1/2)hi<xi <(Zi+1/2)hi 2)
The N-tuple Z;=1,2,....,N, denoted Z, is called "cell
vector” of the state space. The state space is now
considered as a collection of cells, and the mapping from
x(n) to x(n+1) of the point-to-point approach is here
substituted by cell mapping C from Z(n) to Z(n+1):

Z(+1)=CZM) Zimn+1)=C{(Z(n)

Section 3 ‘FAM.

A Fuzzy Associative Memory is a collection of fuzzy
rules of the form:

X, =AandX,=A,...and X, = A_thenY = B.
Given:

ny;, the number of fuzzy sets defined for each state
variable X;,

ny, the number of fuzzy sets defined for the control
variable Y

then the number r of possible fuzzy rules that can be

defined on the state-control space is:

m
r= nv~ani
i=1

This value grows quickly, and all the possible rules are
certainly not needed to model the control task. The actual
number of rules is much smaller.

Kosko [Ko0s92] proposes an adaptive algorithm for the
definition of a suitable set of fuzzy rules. He also suggests
the use of neural networks for the identification of such
set of rules, starting from a training set consisting of
examples of the input-output space of the problem.

The network we used is a winner-take-all network, that

performs a clustering on the state-control space according
to a well-known competitive leamning algorithm (see
[PDP86]). The network consists of two layers of units
(the input and the output layer). Given m state variables,
there are m+1 units in the input layer. Given r possible
fuzzy rules for the problem, there are at most r units in
the output layer. The rule of propagation of signals in the
network is the usual inner product between the input
vector x and each weight vector w,, Namely, for each
output unit i, its activation value a; is: a; = w;*x.
The output unit for which the activation value is highest
wins the competition, and its weight vector is updated
according to the simple rule of moving the weight vector
towards the direction of the input vector, in such a way to
minimize the distance E between the center of the cluster
the input vector belongs to and the input vector:
= S W o]
petraining set
then the updating rule for weight vector wWPcantroid at
time t+1 is given by:
Weentoid s 0+ 1) = Woia (O + 11 (6] = Woia (1))
where ) is a positive learning speed.
At the end of the training phase, wcﬁ weight vector
corresponding to an output unit that has won many times
the competition represents the center of a cluster in the
state-control space, i.e. it represents a fuzzy rule for the
problem at hand.
In this way it is possible to determine through a neural
network the number of suitable fuzzy rules for the
problem, and the center of the involved fuzzy sets for
each state variable and for the control variable. In fact,
each vector (xj, x2,... , Xp, y) obtained through the
clustering algorithm corresponds to the fuzzy rule:
X, =xandX, =x,...and X, = x thenY =y
where each value represents the center of a fuzzy set.
Section 4 Fuzzy controller synthesis.

In this section a method based on cell-to-cell mapping to
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perform the automatic synthesis of a fuzzy contrdller is
described. The procedure of controller synthesis is divided
into two different phases. In the first phase the "optimum"
value of the control variable for each cell of the space
state is computed. This ccmputation is carried out by
using an optimization procedure of a particular
performances index, obtaining a map of control input for
the system. In the second phase, this map is transformed

in a fuzzy control algorithm by using a FAM approach.

imization ph
Let's suppose to have a discrete model of the system to be

controlled:

xi(k +1) = f1(x(k),u,k)
x2(k +1) = f2(x(k), u,k)
Xn(k + 1) = fn(X(k), u, k)

where x € RD, is the system state vector, u is the input
signal, and k is the discrete time. This procedure is
available also for those systems that cannot be
mathematically modelized, but a neural or linguistic
model can be obtained. Once the state variables of the
system to be controlled are identified, the maximum range
of variation for each of these variables is imposed. These
variables represent the fuzzy controller inputs not yet
fuzzyficated. The space state is divided into an adequate
number of cells, each cell representing a possible initial
condition, from which we want to control the system. The
space state discretization strongly influences the control
system performances: an approximate discretization
allows an approximate control law. For each cell the
optimum control law ug(.) is computed by using the
following optimization procedure:

1) a functional F(.,u) is fixed, resuming the desired

system performances. For example: F can be equal to

the weighted sum of the control variable quadratic

errors towards the reference values.

2) for each cell the functional initial value Fj, is

computed: the controller input variable values are those

determined starting from the initial conditions

represented by the cell and under the action of upgm;

3) it's calculate ug minimizing the functional.
This procedure is a gradient descent based algorithm, and
for this reason the problem of local minima is present; to
overcome this problem a simulated annealing has been
implemented. At the end of the optimization procedure we
obtain for each cell an "optimum" value,uq, of the control
variable to be imposed to the system in order to obtain the
desired performances in a finite number of sampling
period. This map represents, with more details, that part
of information that, otherwise, should be developed by an

expert.

4.2 Controller synthesis

The control law determined in the described way, is then
used for the generation of the training set for the neural
network: for each cell of the space state a pattern is
generated of the form: (x1 x2 ... xm y).

Since the values of the state variables are uniformly
distributed in the state space, it is expected that the
clustering carried out by the neural network is determined
by the control values. For the same reason, an optimal
initialization of the network is possible: training patterns
are used as the initial centroids in the state-and-control
space, so that the network starts the learning process from
a good initial situation. This initialization is improved by
forecasting the number of fuzzy sets for each state
variable, and consequently by allowing a small overlap
between neighbor clusters.

After training, some weight vectors will be interpreted as
fuzzy rules governing the system: given the weight vector
wy corresponding to output unit r, wp = (W) ... Wp+1),
if each wj (i = 1 .. m) is in the range of variation of the
state variable Xj, and w41 is in the range of variation
of control variable y, and unit r has won many times the
competition, then w; can be interpreted as a fuzzy rule R

governing the controller behavior:



R=if X1=w] and X2=wj.. and Xm=wy, then
Y=wm+1
After having found the interesting fuzzy sets and rules, it

is possible to define the membership function for each
fuzzy set.. For each fuzzy set, the corresponding
membership function f(x) has value 1 in x=wj, and its
shape is triangular of height 1. Moreover, the membership
functions of two adjacent fuzzy sets initially have an
overlap such that the sum of the activation values of each

point in the discourse universe is equal to 1.

In this way, the fuzzy controller structure is completely
determined.

Section 5 DC motor control

To show the capability of the proposed procedure, an
example for the design of a fuzzy controller to regulate
both speed and position of the rotor of a DC MOTOR is
presented.

The motor is supposed to be connected to a load with a

friction f and inertia J. The control task is to track a
variable trajectory with a zero state error, minimum
overshoot and minimum settling time. The system model
is a second order one. The input variables to the controller
are the error between rotor position and setpoint, and the
rotor angular speed. The fuzzy controller output is the
statoric voltage. The ranges of these variables are imposed
from physical limit. By using the proposed procedure a
fuzzy controller was implemented and the control
performances was tested. Figure(1) shows the result of the

control realized in the described way; these result are
compared with the ones obtained by using a PID. We
found that the fuzzy controller proposed has better
performances than PID both for the control task and

control robustness. In fact the fuzzy controller is more

insensitive both to the system parametric variations and to

external noises than PID does.
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0 M between Fuzzy and PID control
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Fig(1) Comparison between Fuzzy and PID control



