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Abstract

This paper describes a neo fuzzy neuron which was
produced by a fusion of fuzzy logic and neuroscience. Some
learning algorithms are presented. The guarantee for the global
minimum on the error-weight space is proved by a reduction to
absurdity. Enhanced is that the learning speed of the neo fuzzy
neuron exceeds 100,000 times of that of conventional multi-
layer neural networks.

1. INTRODUCTION

One of the authors presented a model of fuzzy neuron, in
which linear synaptic connections are replaced with a
nonlinearity characterized by a membership function labeled as
“tightly connected”, "loosely connected", etc., and excitatory
connections and inhibitory connections are represented by
fuzzy logic intersections and fuzzy logic complements followed
by fuzzy logic intersections, respectively [1, 2]. Sequentially, a
neo fuzzy neuron model was presented by the authors [3,4,5],
the nonlinear characteristics of which is represented by fuzzy if-
then rules with complementary membership functions. One
multi-input one-cutput neo fuzzy neuron model, but not a
neural network, can exhibit its good ability to describe a
nonlinear relationship between inputs and output as well as its
short learning time compared with a conventional neural
network.

This paper proves the guarantee of a global minimum in
error-weight space of a neo fuzzy neuron by employing the
reduction to absurdity. Furthermore, five learning procedures
are presented and compared with each other in order to evaluate
them. The final error and the learning time of the neo fuzzy
neuron are compared with those of a conventional three-layered
neural network.

2. ARCHITECTURE OF A NEO FUZZY
NEURONI[3,4,5]

The structure of the neo fuzzy neuron is shown in Fig.1(a),
where the characteristics of each synapse is represented by a
nonlinear function f; and the soma doesn't exhibit a sigmoidal
function at all. Aggregation of synaptic signals is achieved by
an algebraic sum. Thus the output of this neo fuzzy neuron can
be represented by the following equation;

y = fi(x1) + fa(x2) + -+ + fn(X)
=Y fix)

The structure of the nonlinear synapse is shown in Fig.1(b).
The input space x;is divided into several fuzzy segments

which are characterized by membership functions g, Mi2,...,

Mij..» fin Within the range between Xmin and Xmax as shown
in Fig.1(c). 1,2, ..., j, ...,n are numbers assigned to labels
of fuzzy segments. The membership functions are followed
by variable weights wii, Wi2, ..., Wij, ..., Win-

Mapping from x; to fi(x;) is determined by fuzzy inferences
and a defuzzification. The fuzzy inference adopted here is a
singleton consequent, that is, each weight wj; is a deterministic
value such as 0.3. It should be emphasized that each
membership function in antecedent is triangular and assigned to

2.1

be complementary (so called by the authors) with neighboring
ones. In other words, an input signal x; activates only two
membership functions simultaneously and the sum of grades of
these two neighboring membership functions labelled by k and
k+1 is always equal to 1, that is, pjx(xi) + pix+1(Xi) =1 So
that the defuzzification taking a center of gravity doesn’t need a
division and the output of the neo fuzzy neuron can be
represented by the following simple equation.

n
pIRTRCHR N
j=1 = Pi(Xi) Wik + i ke 1(Xi) Wi k41
Hik(Xi) + Hig1(x1)
2 (%)
i1

= Rik(Xi) Wik + Hik+1(Xi)- Wi k+1° 2.2)
This equation can be realized by the architecture shown in
Fig.1(b)
The weights wijj are assigned by learning procedures
described in the next chapter.

fi(x;) =

3. LEARNING ALGORITHM
3.1 Incremental Updating (Stepwise Training) : SE.

Let Xg=(X1k, X2k, -++» Xik> ---» Xmk) be the k-th input pattern
applied to the m-input neo fuzzy neuron and yy and tey the
output and its desired value, respectively, corresponding to the
k-th input pattern, where k=1, 2, ..., p.

The primitive learning procedure was presented by the
authors [3.4,5] as a modification of a steepest descent method
[6].

Awj; = - afyi - telij(Xik) 3.1
where o represents a learning rate and is empirically obtained.
In this learning algorithm, all the initial weights are assigned to
be zero.

.2 Batch in, mulative Weight Adj ;

The learning procedure of 3.1 is the incremental change of
weights for each input pattern. The other leaming procedure is
to change the weights for a set of p input patterns. In this
case, the square of the error is cumulative for a set of patterns

‘IZEFlZ (vk - texf (3.2)

The mcremental change of weights for minimizing the squared
error (Eq.(3.2)) is obtamed from Egs.(2.1) and (2.2) as

E
Aw;j = - aaa =- az (Y - [ek)""lj(xlk) 3.3)
Wij

In this learning algonthm, all the initial weights are assigned to

be zero and the updating of the weights is achieved after

calculation of cumulative value in Eq.(3.3).

3.3 Direct Search Method with Second Order Interpolation :
D.R.M.

In 3.1 and 3.2, a learning rate is a constant obtained by
experiments. In order to realize a learning of high-speed and
least error, the leaming rate should be optimally adjusted for
each case
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The optimal value of o to minimize the error Eatag. .n

temporal point t can be obtained by searching o by which the
updated weight produces the minimal error in the next step.

In this paper, the searching process is based on interpolation
of second order (Lagrange's interpolation) in order to obtain the

optimal value of o at higher speed. The error function E isa
function of o and unimodal as described in Chap.4. The

procedure to obtain the optimum value o, which gives the
approximately minimal error is presented in the following.

Assume the searching for o in the interval [a®, 00+h] on
the error-o space.

<STEP 1> If E(a0)>E(a0+h), then the interval {0, a0+h]
is shifted by the increment h to [a%+h, aO+kh]. If
E(o0+h)>E(0f+kh), then the interval [a0+h, o0+kh] is shifted
to [a0+kh, a0+k2h]. This procedure is continued until
E(a%+ks-'h)<E(a%+ksh). If E(a?)<E(a0+h), then the similar
shifting of interval to the counter direction is achieved until
E(a®-ks-Th)>E(a%ksh). In this paper k=0.2 and h=0.05.

<STEP 2> Let the last three points of o be o;, 02 and
a3 (0<a<as), and E be Ey, E; and E3 corresponding to
them, respectively. For example o) =00+k?h
=0l +k!h  and o3=a®+kth in case of
E(a%)>E(a®+h). From the interpolation of second order {7],

the optimum value 0y Which gives approximately minimum
value of E is obtained by the following

; (a% - 0‘%)51 + (a% - 0‘%)52 + (G% - 0‘%)153
%P7 20tz - 03)E + (03 - 01)Ep + (0t - a)E3

3.4

The change of weights is achieved for each set of input
pattem foe saving time.

3.4 Incremen ing with Variable Learni (VL

In the ordinary Incremental updating, the learning rate is
constant through the procedure. As the procedure goes on, the
weight vector comes up to but does not reach the global
minimum and oscillates around the minimum point. The bigger
the learning rate is assigned to be , the bigger the oscillation
becomes.

In this learning procedure, several learning rates are given
and they are all examined at the first learning cycle. The best
learning rate which gives the minimum error is adopted in the
sequential cycles. When the change rate

[E(W(t+1)) - E(W(®))
E(W(®)
of error becomes less than a given value (0.1 in this paper),

then the learning rate is made to be smaller (1/10 of the value)
to continue the procedure.

3.5)

3. cent Method with Momentum Term ; Ml

In the steepest descent method of learning, there exists a
problem when we implement ordinary neural networks or a neo
fuzzy neuron. How is the value of learning rate « to be
assigned? As might be expected, a large o corresponds to
rapid learning but might also result in oscillations. In order to
suppress this oscillations a momentum term is added to the
learning rule by Rumelhart, Hilton and Williams [6]. Its neo
fuzzy neuron version is described as

P
Awii(t+1) = - 0 Y, (yk -teihtij(xic) + BAWi(D)
k=1

(3.6)

where B represents a momentum parameter. The momentum
parameter is a positive value and less than unity, and there is no
general criterion how the value is to be chosen as well as the

learning rate o . In this paper, o and B are empirically
assigned to be 0.3 and 0.2, respectively. This algorithm allows
us to expect the less learning cycles to converge.

3.6 Comparison

Learning algorithms described above are examined for a 1-
input 1-output neo fuzzy neuron by computer simulation
employing a work station. An unpredictable time series of one
dimension is previously created and 50 data points are
sequentially applied to the input of the delay element followed
by the neo fuzzy neuron. This system can achieve the learning
of the synapse for predicting one incremental step ahead. A set
of 50 data points achieves one learning cycle and thus one batch
learning (3.2, 3.3 and 3.5) is accomplished for each set of
data. The learning procedure is iterated for 100 machine cycles
for each case, that is, the total amount of 5000 data are applied
for learning examination. The input range is divided into 12
fuzzy segments. Thus this 1-input 1-output neo fuzzy neuron
possesses a nonlinear synapse which is characterized by 12
membership functions and 12 weights. All the initial weights
are assigned to be zero which is quite different from an
conventional neural networks.

Experimental results from computer simulation is shown in
Fig.2, where the horizontal axis represents the learning time mt
(machine time) on the work station and the vertical axis the root
mean squared error (R.M.S. error), both in logarithmic scale.
The root mean squared error is defined [8] by

P
Erms = 4|/ %Z (yk - tex) 3.7
1

Four proced\fres SE., BA., V.L. and MO. exhibit the
convergence within 1 msec, while D.R.M. does about 1 sec.
Because in D.R.M. procedure, the optimum value of a is
calculated at each learning cycle.

4. GUARANTEE FOR A GLOBAL MINIMUM

In this chapter, it is proved that the neo fuzzy neuron model
guarantees the global minimum in the error-weight space under
an arbitrary initial condition.

[Theorem]

If the error-weight space E-w possesses a global minimum,
it does not do any local minima. That is, E-w necessarily gives
the global minimum because of its unimodality.

{Proof]

Let us assume that if E-w possesses a global minimum,

then it also possesses local minima. Let the weight wy, giving

a global minimum Egmj, be Wy min - That is,
P n m 2
E= %2 ( z W3i(Xik)Wijmin - t€k) = Emin
k=1 j=1i=

oE 4
k=1 j

aWuv Wuv = Wuy min j=

“.1n

—
—

Wii(Xik)Wij min ~ tex)Huv(Xuw) = 0

—_
—

) o 4.2)
Let the weight w,, giving a local minimum E;,. be Wy, loc -

That is ,
p n m 2
Z (z Z Kij(Xik)Wij loc - tex) = Ejoc
k=1 j=1 i=1

oE p n m
Z (z Z Hij(Xik) Wij loc - te)uy(Xyk) = 0
awuv Wuv = Wavgoe k=1 j=1i=1

i

E= (4.3)

(38

(4.4)
where Enin<Eioc.
An arbitrary real number r satisfies
JE ) JE ‘) 2
+ = 0 .
((3wuv Wor = Wovmin  1OWay fig, = Wquoc) @)

From Schwarz's inequality and Eqgs.(4.1), (4.2), (4.3), (4.4)
and (4.5), we can get

—1018—



j=1 i=1
n m

~
Ms

j=1 i=1

p
< (2Emin + 2%Ejoc + 4rVEmigFioc) Y, Muv(¥uk)?

k=1
where the former equality is valid when there exists an arbitrary
real number A satisfying Eqs.(4.7), and the latter equality is

valid when there exists an arbitrary real number ¢ satisfying
Eq.(4.8)and Eq.(4.9) is valid.
m

1
(‘ Hij(Xig) Wij,min - tek) +'{
j=1

il

>

j=1 i=1

n
=1i=1
m

1 J

n
Mii(Xik) Wijmin - t€x = S()z

j=1 i=1

M o

Hij(Xik) Wij toc - tek
i

(4.8)

d
n m )i} m
(Z 2 Mij(Xik)Wij,min - tekX)Z 2 Hii(Xi) Wij Joc - tek) 20

j=1 i=1 j=1 i=1
4.9)
Thus we can obtain the following equation with equality
under the conditions of Eqs.(4.7), (4.8) and (4.9).

0< Emin + rZEloc + 2ry EminEloc 4. 10)
When Eqs.(4.7), (4.8) or (4.9) is not valid, the equality in
Eq.(4.10) is not valid. That is,

an

Emin + PEjoc + 2r{EqigEloc > 0 4.11)
is valid for an arbitrary real number r . However,
= - o/ Emin (4.12)
' E

can makekt)fle left hand side of Eq.(4.11) to be zero. Thus
Eq.(4.11) includes absurdity in itself.

On the other hand, when Eqs.(4.7), (4.8) and (4.9) are
simultaneously valid, the equality in Eq.(4.10) should be valid.
That is,

Emin + PEjoc + 21¥EqinEloc = 0 (4.13)
for an arbitrary real number r. However, in this case, we can
get the following equation from Eqgs.(4.1), (4.2), 4.3), (4.4),
(4.5), (4.7) and (4.8).

( oE ) . JE ) )2
(awuv Way = Way min awuv Way = Wavloc,

_ 2Bide + 17

A
Eq.(4.14) is not necessarily equal to zero for any real numbers
£, A and r and thus it exhibits absurdity with respect to
Eq.(4.5). ) )
Consequently, the assumption , " if the error-weight space
E-w possesses a global minimum, then it also possesses local
minima, " is not valid, and if the error-weight space E-w

possesses a global minimum, it does not do any local migirgab

4.14)

5. COMPARISON WITH A CONVENTIONAL
THREE-LAYERED NEURAL NETWORK
The ability of a neo fuzzy neuron (NFN) to‘descn'be a
system is examined by comparison with a conventional three-
layered neural network (NN). One dimensional nonlinear
dynamical system employing a logistic map is adopted to create
the time series which is used for training. The time series of 50
time points is sequentially applied to the delay element to feed
the data x(t) at time t to the NFN or NN, then the output is
the calculated value yi(t+1) at t+1 and the input to the delay
element is te,(t+1). The NN achieves the learning by the error
back propagation algorithm [9] and the NFN does by D.R.M.
in the same manner to 3.3. The examination was implemented
for 100,000 training cycles for each. '
Fig.3 shows the decay of R.M.S. errors for various neural
networks and neo fuzzy neurons. NN4 and NN10 represent

Kij(Xix) Wij,min - lek) + Z 2 Wij(Xik)Wij loc - t€k

_Z Z Hij{Xi) Wij loc - tek) = Mgy (Xuk)

P n m n m ' 2
0= (Z ((‘ Kij(Xik) Wij,min - tek) + z 2 Rij(Xik) Wi loc - tek) }‘uv(xuk))
2 P /
)) 2 Fluv(xuk)2
k=1

(4.6)

4.7

conventional neural networks which possesses 4 hidden layer
neurons and 10 ones, respectively. NFN8, NFN12 and
NFNI16 represents neo fuzzy neurons, the nonlinear synapse of
which is described with 8, 12 and 16 pairs of membership
functions and weights. The figure shows drastic difference in
learning speed between the neo fuzzy neurons and conventional
neural networks. The former one can reduce the error by two
decades within 1 sec. , while the other one cannot reduce the
error less than one hundredth within 100,000 sec. The figure
also shows that the neo fuzzy neuron with more segmentation
(i.e. more membership functions and weights) exhibits the
smaller error at the sacrifice of learning speed.

Fig.4 (a) and (b) shows the identified nonlinear functions in
the neural network and the synapse of the neo fuzzy neuron,
which correspond to a logistic function to create chaotic time

series used for learning. The NFN12 exhibits much higher
accuracy rather than the NN10.

6. CONCLUSIONS

Some learning procedures are examined for a neo fuzzy
neuron model. Its learning characteristics is compared with that
of a conventional three layered neural network. A neo fuzzy
neuron model shows a drastic improvement in learning speed
and accuracy. Furthermore, the guarantee of convergence to a
global minimum in a neo fuzzy neuron is proved. This aspect
implies the quite difference from traditional neural networks.
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Fig.1 (a)Structure of the neo fuzzy neuron, each
synaptic characteristics of which is represented by a
nonlinear function f;. (b)Structure of the nonlinear
synapse which is described with a set of if-then rules
including singletons in consequents. (c)Triangular and
complementary membership functions assigned for the
fuzzy segments in the input space.
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Fig.2 Comparison of learning rates between different
learning procedures (root mean squared error vs.
machine time for learning). The input space is divided
into 12 fuzzy segments in the neo fuzzy neuron under
test.. SE.: Incremental updating (¢=0.3). BA.: Batch

learning (0.=0.3). D.R.M.:: Direct search method
with second order interpolation (h=0.05, k=0.2).
V.L.: Incremental updating with variable learning rate
(20=0.05, 0.1, 0.2, 0.5, 1.0, 2.00; permissible
change rate of error = 0.1). MO.: Steepest descent
method with momentum term (0=0.3, 8=0.2).

1
1x107" 1x10° 1x10"1x10%1x10° 1x10°
- log MT (sec)

Fig.3 Comparison of learning rates between neo
fuzzy neurons (NFN) and conventional three-layered
neural networks (NN). NN4, NN10: 4 and 10
neurons in a hidden layer. NFN8, NFN12, NFN16:
8, 12 and 16 fuzzy segments in input space. A leamning
speed of a neo fuzzy neuron exceeds 100,000 times of
conventional neural networks.
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Fig.4 Nonlinear functions identified by (a) a neural
network and by (b) the synapse of a neo fuzzy neuron.



