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Abstract

An association memory, solving an optimization problem; a
Boltzmann machine scheme learning and a back propagation
learning in our chaos neuron models are reviewed and some
new results are presented. In each model its microscopic
rule (a parameter of a chaos system in a neuron) is subject
to its macroscopic state. This feedback and chaos dynamics
are essential mechanisms of our model and their roles are
briefly discussed.

1 Introduction

In tecent years, there has been increasing interest in the ap-
plication of chacs to technology. Harnessing chaos to infor-
mation processing may be one of the most interesting appli-
cations, and several authors have discussed on this subject.
We have presented chaos neuron models and their abilities
of parallel synchronous computation and learning have been
studied in previous papers. The power of the ability of par-
allel synchronous computation have been illustrated for an
association memory [1, 2] and solving a difficult optimiza-
tion problem [1, 2, 3]. An important issue in neurocomput-
ing is learning. Our chaos neuron models have the ability
of not only the parallel synchronous computation but abil-
ity of learning: (1) Boltzmann machine scheme high speed
learning without simulated annealing [4], (2) stochastic back
propagation learning [5].

2 Chaos neuron models

2.1 A coupled-oscillator model

The neuron of the first model [1] is realized by two chaos
oscillators which are coupled each other. We adopt discrete
time (n = 0,1,2,3,...) to llustrate dynamics of the model.
The equations of motion of the coupled oscillators in the
1—th neuron are described as follows:
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where D;(n) is the coupling coefficient between the two oscil-
lators in the i—th neuron at time n, and z;(r) (0 < z;(n} <
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1) and yi(n) (0 < yi(n) < 1) are the variables of the first
and the second oscillators in the i—th neuron at time n, re-
spectively. This system reduces to Yamada-Fujisaka model
[6] if f(z) = g(z) and D;(n) is a constant. For the sake of
simplicity the equation of motion of the uncoupled oscilla-
tors are chosen as f(z) = az(1 — z) and g(y) = by(1 — y),
where a (0 < ¢ < 4)and b (0 < b < 4) are the control
parameters.

When the coupling coefficient D;(n) becomes large the
two oscillators synchronized each other if ¢ = b and nearly
synchronized if ¢ ~ b. And an asynchronous motion appears
if Dy(n) takes a certain small value. These phenomena can
be measured by the difference A;(n) which is defined by

Ai(n) = |z:(n) = yi(n)|- ()

The binary state of the i—th neuron u;(n) is defined using
Ai(n) as

Lo} 1 (excitation) if Ai(n) <c¢,
uin) = { 0 (inhibition) otherwise, )

where ¢ is the criterion parameter of the synchronization.

We synthesize a network of the binary neuroms where
i—th and j—th neurons are connected to each other with
the weight w;;. The state of neurons have an influence on
D;(n) through the medium of the connection. The relation
between w;; and D;(n) is defined as follows:

DDi(n) =Y wijui(n) + s — 6, (4)
7

v _ ) DDi(n) i DDi(n) >0,
Din) = { 0 otherwise,

where s; is the external input and 6; is the threshold value.
We put a limitation of the coefficient as D;(n) > 0 which
prevents the coupled-oscillator from unsuitable motion.

We choose the value §; in order to the coupled-oscillator
takes the critical state of synchronization when w;; = 0,s; =
0. The control parameters of the coupled oscillators are
usually taken as b =~ a = 4, and this case 9, is calculated as
g = —0.5 [1].

An analog version of the binary model can be easily ob-
tained if we change the rule of Eq.(3). An example is given
by [3]

(5)
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with
s(n) = —— -1 )
1 —_— A,(n) b
where zg is the analog parameter. This analog neuron be-
comes the binary one if zp — 0.

2.2 A single oscillator model

In the second model, a single chaotic oscillator in a critical
state acts as a neuron [2]. The equation of the oscillator is
described by

zi(n) = ai(n)zi(n )1 - z,(n)], (8)

where ¢;(n') (0 < ai(n') < 4)and z;{n') (0 < z;(n') < 1)
are the control parameter and the variable of t—th oscillator
at the internal time n’, respectively.

The logistic map f,(z) = az(1 - z) has a wide window of
a period three, namely a stable period three motion appears
if the control parameter a exceeds the critical value a. =
1422 and chaos is produced below the critical point. The
neuron is designed with the aid of the critical state. The
control parameter a;(n') changes its value at every m steps,
namely

a,—(mn) = E wiu(n) + 8 — 6, (9)

a;(mn) =a;(mn+1) = ...
= a(m(n+1)- 1), (10)

where n (= 0,1,2,3,...) is the external time and §; is
taken as §; = —a. = —(1 + 2\/5) Occasionally, the value
of r.h.s of Eq.(9) takes a small (large) one, which brings
unsuitable motion, therefore we put the limitations that
Min{a;(mn)} = (a. — c1) and Max{ai(mn)} = (ac + c2),
where ¢; and ¢, are the positive parameters. The value of
the neuron is determined in the same way with Eq.(3) or
Eq.(6), but the difference A;(n) is defined by

Ai(n) =| zi(mn) — z;(mn+3) | . (11)

This neuron becomes a formal neuron, which has no tran-
sient time, if m — oo with ¢ = 0. A network of these neurons
has a good function for a self association with a set of pa-
rameters {m = 8,¢ = 0.0001,¢; = ¢; = 0.005}, however
it spends much steps to solve a TSP (Traveling Salesman
Problem) [2].

2.3 A 3-valued model

The third model is a network of three-valued neurons. A
system of coupled 3-oscillator is used for the neuron. The
equation of motion of the system is given by

z(n' +1) 1
<3E2'ig) = 1+ 3Di(m)

1+ Dy(n)  Di(n)) Di(n")
( Di(n') 1+ Di(n')  Di(n') )
Di(n') Di(n') 1+ Di(n")

- flzi(n)]
(g[ye(n’)]) - (12)
h{zi(n")]

This system has three different phases of motion accord-
ing to the value of the coupling coefficient D;(n') = D if the
three oscillators are the same each other f(z) = g(z) = h(z)
[7]). Namely if f(z) = 42(1—z) a synchronous motion, a par-
tially synchronous motion and an asynchronous motion are
observed when D > 1/3, D ~ 0.2 and D ~ 0, respec-
tively. In a similar manner to the first model, a well defined
three-valued neuron can be obtained with the aid of these
motions. The value of the state u;(n) is defined by

1 for synchronous,
ui{n) = 0 for partially synchronous, (13)
-1 for asynchronous.

The judgments of the phases of the motions have been made
using the criterion parameter € in the same way as Eq.(3)
where the three maps slightly different from each other.

The coupling coefficient of the i—th neuron D;i(n') is
changed according to the rules which are the same with
Eqgs.(9) and (10), where §; is settled as §; = —0.2. The
three-valued neuror models is superior to that of the binary
neuron in some respects.

2.4 A multi-valued model

The real neuron is a multi-valued one whose value is ex-
pressed by the density of impulses. The fourth model is syn-
thesized by multi-valued neurons whose impulses are gener-
ated by chaotic sequences. Internal dynamics of the neuron
is driven by the map [8] which takes in the following form:

fola) = Glsintra(s ~ ) +1), (14)

whete 7 (0 < r <3)and z (0 < z < 1) are the control
parameter and the variable, respectively.

A time sequence, which is generated by the map, is trans-
formed into a symbolic sequence owing to the rule; (1) T
if0<z<1/2 (2)}if1/2 <z < 1 Property of the
symbolic sequence depends on the control parameter r that
(1) a ferromagnetic sequence {1,1,7,1,1,...} is obtained if
0 < r < rp(= 2), (2) a tandom sequence is obtained if
r =~ 2.76, (3) an anti-ferromagnetic sequence {1, |, 1, {, T, ..}
is obtained if 3 > r > rap(= 2.930576...) [8]. We assume
that an impulse is generated whenever the direction of the
spin changes with time step. The number of the impulses
Np is counted during in N(> Np) internal time steps where
the initial spin has been given. The number Np is obtained
for examples; (1) Np = 0 for the ferromagnetic sequence,
(2) Np ~ N/2 for the random sequence, (3) Np = N for the
anti-ferromagnetic sequence. The density of the impulses is
considered to be proportional to the number Np, and the
value of the i~th neuron at the external time n is defined
by

() = 1 (15)
Y T exp[—k{Nip(n) - No)|’

where k and Ny are the parameters, and N;p(n)is the num-
ber of impulses of the i—th neuron at the external time n.
Here we have assumed that each external time step is com-
prised of IV internal time steps.
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In the same manner as the second model, the internal
control parameter of the i—th neuron r; is renewed by

ri(Nn) = E wi;u;(n) + 8 — 6;. (16)
3

There are many cases of the parameter set {N, No, k,6;}
which bring us good results. When we take N = 10 and
k = 5.0, for example, self association can be easily carried
out with the parameters; (1) §; = —2.01 (near the ferro-
magnetic transition point), No = 0.5 ~ 6.0, (2) 6; = —2.76
(the random state), No = 0.5 ~ 7.5, (3) 6; = —2.93 (near
the anti-ferromagnetic transition point), No = 0.5 ~ 9.5. If
values of the parameters are taken as {N = 8, Ng =7,k =
3.6,6; = —2.88}, the model shows good behavior for solving
a TSP.

3 Mechanisms and properties

One of the essential mechanisms of our models is that the
control parameter of the neuron (microscopic element) is
changed its value by the macroscopic state {u;(n)} through
the weights {w;;}. On the other hand, the macroscopic
state is obviously determined by the set of neuron’s states.
Namely, the microscopic rule (the parameter of the neu-
ron) is subject to the macroscopic state by means of a
kind of feedback which is expressed by Eq.4, Eq.9 or Eq.16.
This mechanism has been named as feedback slaving prin-
ciple 3] which is different from Haken’s slaving principle
[9] where there is no such feedback. Fach neuron appro-
priately changes its state depends or the macroscopic state
owing to the principle, and the same time a new macro-
scopic state is produced by the set of renewed neurons. One
of the solutions is founded by the model when its macro-
scopic state becomes steady. A similar mechanism can be
observed in the reference circulation, where a meaning of a
sentence is feec back to its words, if we consider that words
and a sentence correspond to the neurons and the model,
respectively. Farthermore, a society (macro) and its people
(micro) metaphorically obey the principle.

Chaos dynamics inside the neuron also plays an extremely
important role. Our models run on deterministic rules, but
they have ability of stochastic search. The stochastic prop-
erty is caused by chaos noise which is not a white noise but
highly intermittent. The noise brings about self annealing,
and a simulated annealing is not necessary for solving an op-
timization problem (1, 2, 3] or Boltzmann machine scheme
learning [4].

Motion of a synchronous Hopfield model falls into a fix
point or a two-state cycle. On the contrary, our model is
synchronous one, however it runs properly owing to transient
motion of the cscillator(s) in the neuron. This synchronous
parallel processing in the level of elements is very benefit for
speed up the computation if it take into account actually.
A coupled nonlinear LCR circuit (analog) [10] and a chaotic
chip (digital) [11] may be useful to realized a hardware of
the model, which can be called as a chaos neuro-computer.

4 Functions of the models

The first model has efficient functions such as self associ-
ation [1], solving an optimization problem (TSP) [1, 3], a

Boltzmann machine scheme learning [4] and a back propa-
gation learning [5]. Whereas each conventional neural model
has only one or two of them. In the following we compare
our model with the conventional models:

1. Hopfield model [12]

The neuron is the binary one and its state is changed
asynchronously by a deterministic rule. The energy”
of the model always decreases in scales of 1 or 0 Ham-
ming distance per one time step, therefore it easily falls
into a trap of local minimum. As a result of this prop-
erty, the model has a function of self association, how-
ever it can scarcely solve an optimization problem.

2. Hopfield-Tank model [13]
Anclog neurons are governed by determenistic differen-
tial equations in the model. It can solve TSP in general,
however the result depends on its initial condition {14].

3. Boltzmann machine [15]
The neuron is the bingry one and its state is asyn-
chronously changed by a stochastic rule. The model
has functions of solving an optimization problem and
Boltzmann machine learning. However, simulated an-
nealing processes are necessary, and these spend long
time steps.

4. The chaos neuron model

The neuron has a dual structure, namely the output
u;(n) is digitel but variable of the coupled-oscillator
in the neuron z;(n),y;(n) and D;(n) take analog val-
ues. It runs on deterministic rules, but it has the abil-
ity of stochastic search without annealing. And the
synchronous update of all neurons enables to change a
state of the model with long Hamming distance in one
step. It has all functions which are shown in the above
models, and also ability of back propagation learning is
confirmed.

A TSP has been solved using the fixsst model [1] and also
the analog version of it [3]. Here we introduce a new analog
neuron and apply it to solve the TSP of 10 cities whose
coordinates are the same as those of Hopfield-Tank [13]. The
value of the neuron is determined by Eq.(6), where a new
zi(n) is used which is defined by

. € A,
z,-(n) = —A,(n) - “‘——‘~1 _ A;(n)’ (17)

where A, is the parameter.

In ref.[3], analog values have been translated into binary
values, which are necessary to find a solution, with the
aid of the boundary value u, = 0.5. The meaning of the
boundary value up is that u;{n) = 0 if the analog value
takes u;(n) < up and w;(n) = 1 if the analog value takes
u;(n) > up. The boundary value u, and the threshold value
f; are regarded as the parameters in the present simula-
tion and the other methods are the same with ref.[3]. We
have carried out 100 runs of 1000 cnt off time steps where
the parameters are chosen as {¢ = 0.0000001,¢ = 4,b =
(a — 50€),1/zy = 5.5,4, = 1.0,u, = 0.05,6; = ~2.4} and
the parameters of the "energy” terms A and B in ref.[1] are
taken as {A = 2.5, B = A/0.9}. The results obtained are
that all (100%) runs find valid tours which include 60 (60%)

~1011 —



best solutions whose distance is 2.69. The average distance
and the variance of the results (all possible tours) are 2.73
(4.77) and 0.01'(0.25), respectively. The above results are
very good, however, the parameter set and the aralog func-
tion may be not the best choice, more efficient results could
be obtained if we select the best choice.

Very recently, a mechanism similar to our feedback has
been incorporated into Aihara’s model [16] by Nozawa [17]
who has obtained efficiently the best solution of the TSP
using the model. However he reduced the problem with the
help of an external condition, and it may not generally apply
to other problem [3].

The first model has a superior ability of Boltzmann ma-
chine scheme learning [4].A back propagation learning of
the logical operation XOR in the model has been studied
in [5]. We simulate the same back propagation learning in
the analog version of the model. The method of the learn-
ing is the same as the conventional one but f,(DDyg; — 0.5)
and f,(DDox — 0.5) are used instead of H; (out put value
of j-th hidden neuron) and O (out put value of k-th out
put neuron), respectively. Where f,(z) is the sigmoid func-
tion fi(z) = 1/[1 + exp(—2z/uo)]. In the learning, after
20 time steps, the model is assumed to be close to equilib-
rium, and then the learning signals are calculated. One of
the simulations using the analog neurons {¢ = 0.005,a =
4,b = (a — €),1/20 = 5.0} is shown in Fig.1, where the
sigmoid parameter ug, the weight learning parameter o,
the threshold value learning parameter ( are chosen as
{ug = 1.0, = 0.8, = 0.4}. The results are better than
those of the binary model in general.

Error
2.0

1.0

0.0 I | Learning cycles
100 200
Fig.1 Learning process in our network.

We find that there are two typical neuron’s parameter
sets which are (A) {e =~ 0.0000001, (s — b) = 50¢}, and (B)
{€ 2 0.001,(a—b) = 5¢}. In the case (A), the model behaves
similar to Hopfield model. The set is good for self associa-
tion and solving an optimization problem such as TSP, but
learning is slow. On the other hand, the model of the case
(B) has all functions and it behavior is similar to Boltzmann
machine.

The second and the fourth models have similar functions
with the first model, but their performance are not so good
as that of the first model.

The third model has a distinctive feature whose neuron
can take ome of {1,0,—1}. We illustrate self association
in Nakano’s Associatron {18] which is realized by the third
model. The three patterns (1,4,8) are retrieved from their
initial patterns which are shown in Fig.2 where the con-
trol parameters of the logistic maps {a,b,c} and other pa-
rameters are chosen as {a = 4,b = 3.9995,¢ = 3.9992,¢ =
0.00001,m = 15}. A weakly deformed pattern is necessary
at the initial time for self association in binary models, how-
ever only small part of pattern is enough for the Associatron
where unknown information is represented by the neurons
with {u; = 0}. Mutual association can be easily carried out
in the Associatron with the aid of the robust retrieval.
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XXOXX XXOXX XXOXX XXOXX
~~~~~ XX@XX XXBXX XX@XX
~~~~~ XX@XX XX@XX XX@XX
----- XX@XX XX@XX XXOXX
----- XX@XX XX@XX XX@XX
=g = =2 =3
XXXBX XXXOX XXXOX XXXO®X
----- XXOOX XX O@X XXO8X
----- XOXOX XOXO®X XOX®X
““““ 00000 00008 00000
----- XXX®X XXX@X XXX@X
n=3 n=1 =2 =3
XQOBX X0008X X000X X8808X
----- OXXX® OXXX® @XXXE®
~~~~~ XG08X X000X X088X
----- BXXX® @XXX0 @X °
~~~~~ X000X X000X X808X
m=a =] =2 =3

Fig.2 Retrieval {rom their initial patterns.
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