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Abstract: An alternative approach to the design of appli-
cation-driven fuzzy systems is proposed. A broad class
of fuzzy systems applications requires a certain fuzzy
partition of the input space while it demands for simple
numerical quantities. For this class, a dedicated fuzzy
system archictecture is presented and a design strategy
is proposed. Both the single-input/single-output and
multi-input/multi-output cases are considered. Nu-
merical analysis are complete illustrating several as-

pects of the proposed framework.

1 Introduction

A broad class of applications driven problems expressed with
the aid of fuzzy sets formalisms lends itself into approximation
tasks. These tasks require a certain fuzzy partion of the in-
volved (input/output) spaces. Some other tasks require only
the fuzzy partion of the input space (space of inputs) while
simple numerical guantities are enough at the outputs of the

system.

Considering, for instance, fuzzy controllers on can look at the
inputs (say error and changes in error) as being transformed via
their fuzzy partitions and utilized to infer (nonfuzzy) numerical
values of control. Bearing this in mind one could conclude
that the use of fuzzy partitions for the input spaces is fully
legitime (since they do reflect the way how humans perceive the
state of the object under control) whereas the control actions

(even realized by a human being) are purely numerical. As
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a consequence of this fact, it becomes difficult to imagine the
way in which the fuzzy partition of the output space (space of

control actions) can be worked out as a useful concept.

This argument should be reflected in the overall system ar-
chitecture. This idea is exploited here starting with a single-
input/single-output systems and then generalizing the involved

concepts for the multi-input/multi-output cases.

2 An architecture of single-input/single-
output systems

The overall topology of the single-input/single-output fuzzy
system that reflects its functions is visualized in Fig. 1. It
consists of a numerical/linguistic (N/L) interface and a linguis-
tic system. The N/L interface translates numerical data into
linguistic data (fuzzy sets). The linguistic system is constructed
with the use of kK AND neurons (logic units) followed by a sin-
gle averaging functional element. The AND neurons are logic-
oriented processing elements combining fuzzy input signals via
an extended AND operation [5]. The averaging functional ele-
ment combines these activation levels with the prototypes (cen-
troids) distributed in the output space to produce an output
value. The following subsections will elaborate in more detail

on several main aspects of this architecture.
2.1 The N/L interface

The function of the N/L interface is to “code” any value of

the input variable of the system in sense of a finite family of
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linguistic labels (fuzzy sets) being accepted a priori as useful
in handling the available data by the considered system. This
coding can be achieved in many different ways. The use of pos-
sibility and necessity measures might be of a particular interest.

Note also that for a numerical datum these two measures coin-

cide.
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Figure 1: The proposed single-input/single-output architec-
ture.

Simultaneously, the interface can be seen as a pre-processing

block of the proposed fuzzy system. From information-processing

point of view one can put forward several postulates such as: (i)
maintaining the semantic integrity of the linguistic terms; (i)
contributing for improving the overall system capabilities, and

(iii) keeping as low as possible its computational requirements.

For the construction of a N/L interface one can assume r ref-
erence fuzzy sets (cf. [2]). Here, the i-th reference set (i =
1,...,7)is characterized by a normal and convex membership
function with two parameters representing its center and aper-

ture.

In this work, two types of membership functions will be in-
vestigated: (piecewise) linear and nonlinear membership func-
tions. The input interface can be optimized by considering
equivalences of the input information processed by a series of
the N/L and L/N interface. One can assume that the Numer-
ical/Linguistic interface is directly connected to an hypothetic
Linguistic/Numerical interface (produced by the center of grav-
ity method). The parameters of the membership functions are
then determined to achieve a (nearly) zero conversion error sub-
ject to some integrity constraints. The resulting N/L interface

is called an optimal interface 7).

Using linear membership functions, namely triangular member-
ship functions, an optimal interface is achieved if consecutive
membership functions are overlapping at a level of 0.5. On one
hand, this kind of interface does not require any computational

effort. On the other, it might not reflect well the nature

(distribution) of the input numerical data. The contribution
of this interface towards enhancements of the overall system

capabilities could be also fairly limited.

As alternative to the triangular membership functions one can
think on nonlinear membership functions such as gaussian or
exponential ones. For those functions one has to apply numer-
ical optimization techniques in order to find an optimal inter-
face. The PAFIO algorithm has proposed to come up with the

optimal interface [7].
2.2 The linguistic system

The linguistic system can be viewed as a network whose first
layer consists of k¥ AND neurons. Consider X = [z ...2;...z,]
as the input vector of this layer, z; being the possibility mea-
sure of the numerical input of the overall system taken with
respect to the i-th reference fuzzy set. We will also admit com-
plemented values of the inputs considering vector X embracing
both z; as well as their complements &; (£; = 1 — z;). The

expression describing the j-th neuron is equal to:

z; = AND(X,W,); j=1,...,k (1)

where W; summarizes the connections of the neuron. The AND
neuron forms a global AND type aggregation of its input sig-

nals. The implementation involving triangular operators yields
z; = Tio(zi s wyj) (2)

The symbols “T” and “s” represent triangular norm and tri-

angular co-norm, respectively (¢f. [2]). The individual con-

nections modulate the impact that the individual inputs (i.e.
Zy...%;...2,) have on the output of the neuron. Observe that
the k neurons put together realize a fuzzy relation equation

under t-s composition.

Subsequently the values z; are viewed as activation levels of
the prototypes (centroids) distributed in the output space and
coded as the connections between the hidden and the output

layer. More specifically, for the output node one has:

_aht 2yt + 2l
y= (3)
21+ 2+ -0+ 2

2.3 Learning in the network
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The learning activity is of parametric character and includes
modifications in all the values of the connections between the

layers.

Let the performance index be given as a standard sum of squared
errors, say

1 X

Q= ﬁZ(t( - w)?
=1

where t; stands for the i-th target value at the output while y;
denotes the actual output of the network. N is the number of
samples of an available learning set. In general, the updates of
each connection (say w()) are proportional to the corresponding
gradient,

)
"ﬂ(.)_aw“

Awgy =
with n) being the learning rate parameter associated with
a specific connection. Considering independent learning rate
parameters allows us to introduce a very simple, yet efficient
mechanism aiming at improving the convergence rate of the
learning procedure. This mechanisms uses the signs of the

successive derivatives of the performance index to adjust the

learning speed of each wy,.
2.4 Illustrative example

Let us discuss the task of modelling the static nonlinearity:
t(z) = ﬁ%;—,-. Furthermore, consider that a non-uniformly dis-
tributed data set is available for learning purpose. The data
set comsists of N = 50 pairs, {(zi,t;)|¢ = 1,...,50}, and is
presented in Fig. 2. At the level of the N/L interface triangu-

lar and gaussian membership functions are tested, resulting in
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Figure 2: The 50 pairs of the data set.

T and G system, respectively. Three linguistic terms were as-

sumed for both systems. For the realization of the AND neu-

rons, the t-norm has been defined as the product and the s-norm
has been taken as the probabilistic sum. For assessing the per-
formance of the trained systems, a sequence of testing inputs
has been applyed to both of them. The results of this cross-
validation are presented in Fig. 3. This Figure shows a good
performance for system G while a relatively week performance
can be observed for the system T. The increased number of the
AND neurons will not be able to improve this performance.
Similar comparative performance have been visualized when
the number of reference fuzzy sets has been increased. Fig. 4
illustrate this scenario in which we consider now five linguistic

terms at the interface level.
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Figure 3: Cross validation for systems with 3 reference fuzzy

sets.

Figure 4: Cross validation for systems with 5 reference fuzzy
sets,

3 A general multidimensional architec-
ture

In this section a generalization of the presented fuzzy system is
provided, that is, the multi-input/multi-output case is adressed.

The layout of this general architecture is visualized in Fig. 5.

—987 —



In what concerns the linguistic system one can aggregate the n
linguistic inputs into a single one, say X = [X1]X2]...|X,] and
still use the linguisﬁc system proposed for the single input case.
The network will learn just like conventional neural networks
do, however the linguistic meaning of the structure it will be
lost. Thus there is a semantic need to generalize the above

mentioned AND neurons.

Figure 5: The layout of a general architecture.

The n inputs of the (extended) AND neurons are Xi,..., X,
where as before X; € [0, 1]™. Again, each X; can be augmented
by considering the complements of its elements. The expression

describing the j-th neuron is equal to:

2 = AND(X1, Xo0.. . X, W;);  G=1...k  (4)

and the implementation involving t-operators yielding:

z; =T T (215, 0 8 Tnju 5 Wiy, jni) (5)

With this generalization the semantic meaning of the AND neu-
ron is preserved. Namely, the individual connection, w;,, . ;. j,
still modulate the impact that inputs, Xy,..., X, ..., X,, have
on the output of the neuron, and the layer consisting of the k
extended AND neurons can be understood as an extended ver-
sion of the fuzzy relation equation (cf. {6]). The importance
of such structures is augmented even further since there is no

analytical solution for fuzzy relation equations under t-s com-

position {1, 3].

The parametric learning process is now driven by the perfor-

mance index involving m outputs:

1
Q:._.
mN ¢
J

(tks — w)?
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=
)
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4 Concluding remarks

An alternative architecture for application-driven fuzzy systems

was presented.

The problem of the construction of Numerical/Linguistic inter-
faces was addressed. The effect that the shape of membership
functions representing the reference fuzzy sets has on the over-
all system performance has been emphasized. It is argued and
then tested throught experimental considerations that nonlin-

ear membership functions can enhance the system performance.

AND neurons followed by averaging functional units were used
as the linguistic system. An appropriate generalization of the
AND neurons was provided to accomodate the multi-input case.
The layer of the AND neurons can be visualized as a fuzzy
relation equation (or an extented version of the fuzzy relation
equation) under s-t composition. This is a important aspect

since there is no analytical solution for such equations.
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