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Abstract

In this paper we propose a new stability theorem
and a robust stability condition for linguistic fuzzy mod-
el systems in state space. First we define a stability in
linear sense. After representing the fuzzy model by a
system with disturbances, A necessary and sufficient
condition for the stability is derived. This condition is
proved to be a sufficient condition of the fuzzy model.
The Q in the Lyapunov equation is iteratively adjusted
by an gradient-based algorithm to improve its stability
test. Finally, stability robustness bounds of a system
having modeling error is derived. An exampln is also

included to show that the stability test is powerful,

A nonlinear system can be modeled by a fuzzy func-
tion,F, described by if — then rules The parameters of the
rules are identified well using a least square method from its
input output datall].

z(k + 1) = F(x(k), u(k)) (1)

The function F is represented briefly by
m

ok +1) =3 ala)(Aw(k) + Blk)u(k)) )

=1

where A; is a system matrix of i-th ruie and «; = w;f/ Xjwy,and
w; is a membership value of the rule i. Thus the range of a;(x)
is [0, 1] and the summation of all s is 1.

First, we analyze unforced systems, i.e. u(k) = 0.

DEFINITION 1 An n— th order system 13 stable in lin-
ear gense if there erists a matrix P € R™™ such that
V=xTPx i3 a Lyapunov function. That is,

1)v>o0
2)AVik) = V(k+1) - V(k) <0
Jor all z, where the equality holds when x = 0.

It. is certain that P should be a positive deflinite matrix.
Let r € Supp(L;) mean that all states of x are in the supports
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of the fuzzy sets in the i~th rule, i.e. z; € Support(Ly),j =
1,2,....,m.

If a system (1) has a Lyapunov function, then it is stable.
This is a sufficient condition for the system to be stable. When
the system is linear, the condition is a necessary and sufficient
condition for stability. It is the reason that the name contains
linear sense. Now we derive a condition under which the sys-
tem has a Lyapunov function and after then find the bounds
in which the robust stability is guaranteed. The bound is sig-
nificant since the fuzzy functions only approximate nonlinear
functions.

The system matrices in the consequent part of rules may be
divided into common matrix Ag and rule dependent matrices
6A’s. If then, the system matrix A; of i-th rule is denoted by
Ap + 8A;. In (2), i(x)’s are functions of x. Thus for a given
state x, a;(z)’s are deterministic values. Consider uncertain
variables @;'s. For a given x, assume that it can be any values
in [0,1} if o;(ir} is greater than zero and «; = 0if r & Supp(L;).
But the summation is 1 as in (2). With the a/s, we define
another system which is similar to Eq.(2).

ki1
ok +1) = 3 Ao + 8A:)z(k)

=1

=1

i

The system (3) is a special form of systems having structured
disturbances. Let

D, = (Ao + 6A)"P(Ag + 6A) — P )

THEOREM 1 The system (3) is stable in linear sense
if and only if
there exists a positive definite matriz P, such that

For any state x, 7D is not positive for all i € {jlz €
Supp(L;)} the equality holds only when z = 0.

Using the theorem, the stability in linear sense can be
determined from the equation of each rule. The theorem is a
necessary and sufficient condition for stability in linear sense
of the system (3). In the system, the s are considered as
disturbances when x € Supp(L;). Thus if (3) is stable, then
(1) is also stable even though the reverse w nat tyne
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To use this theorem, we have to find an appropriate matrix
P for all rules, which is very difficult. And since we want to
analyze the fuzzy models, not the models with disturbances,
we can make it easier by assuming Ag as a value when the
system (1) is at a certain state such as equilibrium state. Let
P be the solution of the following Lyapunov equation.

AfPA - P=-Q ()
Then D; becomes
D;=6ATP8A; + 8ATPA) + ATP6A; - Q (6)

COROLLARY 1 The system (1) is stable in linear sense
if there exists a stable Ay and a positive definite matriz
Q such that

For any rule i, 2 TDz < 0, for allx € {j|= € Supp(L;)},
and the equality holds when x = 0.

To use the corollary, we need to find Q instead of P in
the theorem 1. It is not easy to find the appropriate P. But
the @Q can be jound systematically which will be shown later.
And it is easy to extend the results to robust stability. To use
the corollary, we have to decide Ag. It is recommended to use
Ya(x)A;, when & = 0, since we are interested in the stability
at the origin.

If o system is proved to be stable by T-S(Tanaka and
Sugeno)’s Method (2], using the common P we can make a
Lyapunov function, V = xTPx. Thus, if we find a P which
satisfies T-S’s condition, then it satisfies the condition of corol-
lary 1, too. On the other hand, even if a system is stable in
linear sense, or it satisfies the conditions in corollary 1, there
may be no common solution P in T-S method. We show such
a case by an example at the end of this section. To use the
corollary we have to know the maximum of 2D for al-
| o € Supp(L;). It is not difficult to find the bound, since
the matrix D; are symmetric, The lower and upper bounds of
+TDr are caleulated easily by diagonalizing ID; using cigen
vectors, even though they are not a tight bounds.

For some @, the matrix D; may be negative definite, and
for the other @’s, not negative definite. If we adjust a Q to the
direction which makes the maximum eigen value of the matrix
D; getting smaller, we improve the possibility of determining
the stability of systems correctly. Using a grandient-based
algorithmn, we can decrease the maximum eigen value of the
D; systematically.

Let a function J; be
Ji=Am(Dy) (M

Then the J; is a function of Q.

where Ap(-) means the maximum eigen value. And let
Q = LTL where L is a full rank matrix. Then .J; can be mini-
mized by iteratively adjusting Q using the following theorem.
Note that from now, we omit subscript i for convenience.

THEOREM 2 Let J be defined as in Eq.(7). Then

aJ

- = Ww— T 8

3L 2L( PMPYy) (8)
where W satisfies

Ao WAT ~ W= —(Ap + 6A)pupis(Ao + 6A4)T + Aopupig Ay
(9)

M 18 eigen vector corresponding to Amez(D)

Adjusting @Q to the direction which minimizes the J, i.e.
the xr‘xaximum eigen values of Dy, for all i=1,..., m, or which
minimize the eigen values of D; of positive zDr’s, we can
increase the possibility checking the stability. Using the the-
orem, we can decrease any eigen values. Thus applying this
theorem to all positive cigen values and adjusting them to the
common direction to which all the positive eigen values are
decreased, we can find more appropriate Q.

The fuzzy model system can not exactly mode} the nonlin-
ear systems. Thus to determine the stability of a nonlinear,
we need to know whether the fuzzy model system is stable
even if it has modeling errors. The errors are in membership
functions and in system matrices of rules. The corollary 1
can be extended to the systems which have modeling errors.
Since it does not use the membership functions, the errors in
membership functions do not affect determining the robust
stability.

Consider a model which has system matrices errors, i.e.
the consequent part of rule i is .

4 1
a(k+1) = (A1 + 3 e Byy)e(k) = (Ao + 64, + 3 ey Eyj)a(k)
7=0 70

THEOREM 3 Let the system described above is stable
in linear sense when there is no modeling error, ie. al-
L E; = 0. Then for rule i robust stability bound,e;, of

e '8 = 1,..1; is given by
—b; + \/b% - daic;

&= .rb-j.‘lis;ix]pl(hg) 2a; (10)
where
&
a; = l,'Z;l'TEgPEijI (11)
j=1
I
b = > |«"(ETPSA +8ATPE; + E;PA + APE)x|
F=1
¢ = 2TDr

Since a; > 0 and ¢; < 0, there always exists an e; > 0. And
all the matrices in a,, ; and ¢; are symmetric, we can easilly
find their bounds when x € Supp(L;).

Using the control w(k) = kx(k) the above results can be
extended to forced systems. Substituting Ag and 8A; by Ag+
Bok and by A; + Bk respectively, we can use the corollary
1 to determine the control stabilizing the system. If it is not
stable, we adjust the k, and use the theorem again. To assist
the adjustment of &, the following theorem is proposed.
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THEOREM 4 Let J be defined as in Eq.(7). Then
a7 ) .
75 = 2(Bo+ B)TP(6A; + 6B:ik)paply + BYP(Ap + Bok) V
(12)
where V satisfies
(Ao + Bok) V(Ag + Bok)T — V= ~(A: + Bik)pmpig(A;i + Bik)7T
+(Ag + Bok)pu piy{ Ao + Bok)T

From the theorem, we can adjust the control gain k effectively
using the gradient mathod.

Example: Let fuzzy membership functions, NB,NM,ZO,PM
and PB are as followings

ulx)
NBE  NM 20 PM  PB

A

VAVAVA

-0 =5 0 5 10 %
Let system matrices be
0.95 -0.1 1.1 -01
= e 3
A [0.13 —0.9}‘42 [0.11 ——O,G} (13)

Ay = [ 0.6 —0.12 }
0.15 -1.2

Consider a system modelled by the following rules.
Rule 1: If z; is Z0,xy is ZO, then x(k + 1) = A x(k)
Rule 2: If xy is NM, then z(k + 1) = Ax(k)

Rule 3: If x; is PM, then a(k +1) = A1x(k)

Rule 4: If i is ZO,o is NB, then x(k + 1) = Aju(k)
Rule 8: If x is ZO,xq is PB, then z(k + 1) = Ayz(k)
Rule 6: If 2y is NB,x2 is ZO, then x(k + 1) = Azx(k)
Rule 7: If ) is PB,zq is ZO, then x(k + 1) = Ayx(k)

Since A; and Aj is unstable, there is not a common Lya-
punov solution. Thus T-S method does not tell this system as
stable. We use corollary 1 for this system. Let Ag = Ay ,then
for @ = I, the solution of Eq.(5) is

, 9.1509 —0.7790
P= 14
[ ~0.7790  5.0068 ] (14)
And D;in THM 1 is

-1 0 1.7937  —0.0354
Dy = [ 0 -1 ] Dz = [ ~0.0354 —3.2063 } (15)

~5.8841 ~0.2062

Dy =
~0.2062 2.1104

After diagenalizing with eigen vectors, we have the following
A V(k) bound for each rule.

Rule 1,2,3 : [-200, 0},

Rule 4,5 : [ -322.9137, -32.9044]

Rule 6,7 : [ -603.8211, -81.2002)
Thus, the system is stable.
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