Fifth IFSA World Congress (1993), 921~924

An 8-bit Resolution 140 kFLIPS Fuzzy Microprocessor

Mamoru SASAKI

Fumio UENO

Takahiro INOUE

Computer Science and Electrical Engineering, Kumamoto University

Abstract

For the purpose of applying to a high-speed control system,
such as engine control for automobile application, we propose
an architecture of a fuzzy inference processor, which can realize
high-speed inference, high-resolution, and can be implemented
with small chip area. We have designed a single chip based on
the architecture, and confirmed the performance, such as 140
kFLIPS with 8-bit resolution.

1 Introduction

Fuzzy inference have been widely applied to automatic con-
trol systems and Fuzzy inference processors have been devel-
oped to realize high-speed inference [1],[2]. However, when it is
applied to high-speed control systems such as engine control of
automobile, high-resolution (8-12 bits) is required in addition
to high speed. Furthermore, it is important that the proces-
sor can be implemented with small hardware resources in order
to incorporate it into the control equipment. So, we need an
architecture of fuzzy inference processor satisfying above three
requirements, i.e. high-speed, high-resolution, and implemen-
tation with small hardware resources.

In this paper, in order to realize high-speed inference, we
make use of the property of parallelism in fuzzy inference al-
gorithm and we introduce parallel processing with multiple op-
erational elements. We can implement the parallel processing
using reasonable hardware resources for two reasons, i.e. (1)
the operational element can be implemented very simply be-
cause the operations executed in parallel are only MAX and
MIN operations. {2) an efficient parallel processing can be ex-
ecuted by preparing only same number of operational elements
as the number of labels, which is 5-7. Considering realization
of high-resolution, the hardware resources for the table-look-up
realizing membership functions, increase exponentially to the
resolution. So, we need to implement the membership func-
tions using logic circuits. In this case, however, the configu-
ration for the membership-function circuit is very complicate
because a multiplier is required, and the parallel processing
with many membership function circuits is impassible because
of the restriction of hardware resources. The typical mem-
bership functions have a property being that the number of
membership functions having non-zero membership value for
any input, is less than three. So, we make use of the prop-
erty and we implement a membership-function circuit output-
ing a label and a membership value of the membership func-
tion having non-zero membership value. The parallel process-
ing with multiple operational elements is possible by preparing

only two membership-function circuits. We introduce singleton
membership-functions with respect to consequence, in order to
implement them with small hardware resources and to realize
high-speed defuzzification.

2 A fuzzy inference processor

A block diagram of the fuzzy inference processor is described
in Fig.l. We explain the membership-function circuit (input
stage), the operational element (operation stage), the weighted-
average circuit (output stage).

i O - E y CT

MFC OPE OPE:Operational
' Element
MFC:Membership WAC:Weighted
Function OPE Average
Circuit Circuit

Fig.1 A fuzzy inference processor

2.1 A membership-function circuit
2.1.1 Grouping and setting of membership functions

Several membership functions are defined on an input as
shown in Fig.2 (a). In many cases, the number of member-
ship functions having non-zero membership value is less than
three as shown Fig.2 (a). So, the membership functions can
be divided into two groups, in which any membership function
does not overlap each another as shown in Fig.2 (b) and (c).
Furthermore, we can specify the region where each member-
ship function is defined as shown in Fig.2 (b) and (c). When
an input is given, we can obtain all information about all mem-
bership functions from two labels and two membership values
with respect to two groups. We can reduce memories to 2/(the
number of labels) by making a table of Fig.2 (b) and (c) with
binary codes representing the labels. However, the method is
not useful for high resolution membership functions, because
the memories increases exponentially to high resolution. Here,
we implement a membership-function circuit by logic circuits,
which calculates the label and the membership value of the
membership function including the input in own region. Al-
though the circuit configuration is complicate because of a mul-
tiplier, increase of hardware resources is very small because only
two membership-function circuits realize the parallel processing
with multiple operational elements as mentioned above.

A membership function is represented by a piece-wise linear
function specified with two turning points e;, ¢;+; and two

—921—

slopes a;, a;+1 as shown in .Fig.2 (¢). In order to guarantee
the operational accuracy, the slope a; is a floating point decimal
as follows :

= A; x 2B . (1)

Where the number of bits NV of A; represents the resolution and
B; = logy N. In this case, the membership value for the input
z can be calculated as follows :

o= { min{(z — ;) x a;, F} (z < ais1))
maz{F — (¢ — aiy1) X @i}1,0} (z > ai41) (3)

Where F, O represent full-bit and zero-bit, respectively.

XN A

(a)Multiple Membership Functions

(b) Group 1
ai . ai+l
(c) Group 2

Fig.2 Grouping of membership functions

2.1.2 Circuit configuration

A membership-function circuit is described in Fig.3. We ex-
plain the operation of the circuit.

(1) An input is sent from the input-register-file to the register
1.

(2) a;, A; and B; are read from the membership-function mem-
ory using the content ¢ of the counter as an address, and
they are sent to the register 2, 3 and 4, respectively.

(3) a; is stored to the register 2 and (register 1 - register 2) is
executed by the subtractor.

(a) In case that the result of subtraction is positive, A4;,
B;, the content ¢ and the result of subtraction are
stored to the register 3,4,5 and 6, respectively.

(b) In case of negative, no data is stored.
After that, the content ¢ is incremented (i = i + 1),

(a) In case that ¢ < M, return to (2).
(b) In case that i > M, go to (4).

Where M represents the number of the labels. The decision
for positive or negative, and the timing signals for storing
can be generated from the sign-bit of the subtractor.

(4) The content of the register 6 are multiplied with the con-
tent A; of the register 3 by the shift-adding type multiplier,
and the result is sent to the shifter.

(5) The result of multiplication is shifted B; times toward LSB
according to the content of the register 4. In the shifting,
zero is substituted into MSB. After shifting, the overflow is
detected by logical summation among upper N bits. Note
that N represents the resolution and the result of the mul-
tiplication becomes 2 x N bits.

(a) In case of no overflow, lower N bits are output .

(b) In case of overflow, full-bit are output .

(6) (a) In case that LSB of the content of the register 5 is 1
(i is odd), all bits of the output are inverted.

(b) In case of 0 (¢ is even), no operation.

The label { the binary code) of the firing membership-
function can be obtained as the upper bits without LSB of
the content i of the register 5.

In the circuit shown in Fig.3, the above operations can be ex-
ecuted on three stage pipeline composed of the subtractor, the
multiplier and the shifter. In this case, the number of clock
cycles every stage becomes max(M,N), where M and N are the
number of the labels and bits representing the resolution. In
case of no pipeline process, the number of clocks for all oper-
ations is (M 4 2xN). So, the pipeline process speeds up by
approximately three times.

CNT:Counter
SUB:Subtracter RE :Register
SFT:Shifter

MFM:Membership MUL:Multiplier

Function
Memory

Fig.3 A membership function circuit

2.2 Operation stage

In the operation stage, the antecedent process of the following
fuzzy rules, that is the matching score is calculated.

R 7t S et ARt)
{A,—lz(xl), Aia(z2), ,A.-_,-(z:j), ey A,-J(:zj)} or
{An:(zl), Ara(zq), VAri(zs), ..., A”(:a:_y)}

THEN 8, (4)

Where A;;(z;), Sk represent a label and a singleton, respec-
tively. And, 4, j and k represent a kind of a sub-rule, an input
and a singleton, and I and J represent the numbers of the sub-
rules and inputs, respectively.

The equation (4) can be obtained by combining typical
rules having same consequence membership-function. A con-
figuration of the operational element processing the rule is
described in Fig.4. Every label in the equation (4) are
stored into the label-memory in the order of Ayy, Agy, ..., Aq,

—922 -

AIQ’AQQ" --9‘4121 "’!AIJ7AQJ’ .
operation of the element.

.., Ars. Next, we explain the

LBM
!
LI
REI Register
File
LBM:Label Memory CM :Comparator

Fig.4 An operational element

(1) Two labels A}, A? and two membership values ng-, g?i of
the firing mernbership-functions with respect to the input
j are output on local bus from two membership-function
circuits. Where the initial value of j is 0.

(2) The Ajj is read from the label-memory and it is sent to
the register 1. Where the initial value of 7 is 0.

(3) The Aij is compared with two labels A} and A? of the
firing membership-functions by two equal-comparators.

(2) In case that A;; is equal to A} (A2), the membership
value g} (97) is stored into the register 2.

(b) Otherwise, the register 2 is reset to zero.

(4) The content of the register 2 is compared with the content
of ith register of the register-file by grater-less-comparator
and the less one is stored into ith register of the register-
file again. Where all contents of the register-file are set to
full-bit as initial values.

(5) (a) In case that i < I, i =i+ 1 and return to (2).

(b) In case that i = I, j = j + 1 and go to (6).

(6) (a) In case that j < J, return to (1).
(b) Otherwise, go to (7).

(7) The greatest value among the register file is calculated by
the greater-less-comparator and it is store into the register
3. The greatest value is the matching score .

As mentioned in section 2.1, the membership-function cir-
cuit requires max{M, N) clock cycles with respect to one input
process. So, in the above process (1), the labels and the mem-
bership values are output on the local bus between max(M, N)
clock cycles. So, when the number I of the iteration of the
above processes (2),(3),(4) and (5) is set to max(M, N), the
most efficient pipeline process on the membership-function cir-
cuit and the operation stage is realized. In the fuzzy inference
processor shown in Fig.1, same number of the operational el-
ements as one of the labels are prepared and the fuzzy rules
described in the equation (4) are processed in parallel.

2.3 A weighted-average circuit

A diffezzification is done according to the following equation:

i G x B
kEk Gk ®

Where Gy, Pi are matching score of the rule with the singleton

output =

Sk, and co-ordinate of the singleton S, respectively. This oper-
ation is executed by a shift-adding multiplier (shift-subtracting
divider) and an accumulator.

2.4 Discussion on the inference speed

In this section, we discuss the inference speed of the proposed
processor. In the following discussion, J, M and N represent
the number of inputs, labels and bits representing the resolu-
tion, respectively. The pipeline composed of the membership-
function circuits and the operational elements have four stages
and each stage requires max(M, N) clock cycles. Therefore, the
number of clock cycles for the process of all J-input is :

maz(M,N) x (4 + J — 1)clockeycles (6)

And, the number of clock cycles for the max operation in the
operational elements is :

I = maz(M, N)clockeycles)

Furthermore , the number of clock cycles for the weighted-
average operation is :

M x N + Nclockeycles (8)
Hence, the total number of clock cycles is :

maz(M,N)x (4+J)+ M x (N +1) clockeycles (9)

In the above clock cycles,
I'x M = maz(M,N) x MruleswithJ — input (10)

are processed.

In case that we process multiple groups of rules, the pipeline
is more efficient and other pipeline process on the matching-
score operation and the weighted-average operation can be in-
troduced. Therefore, the throughput for the multiple groups of

rules is :

maz{maz(M,N) x (J + 1), M x (N + 1)}clockeycles/group
(1)

3 LSI implementation

The fuzzy inference processor have been developed as LSI
using 1.2um CMOS standard cells. In the design, the number
of inputs, labels and bits representing the resolution J, M and
N are set to 8. The performance is :

(1) The rule format and the number of rules
(8-input, 1-output, 32-rule) x 4 rule-groups

(2) The number of clock cycles for the process
First consequence (group) : 174 clock cycles
Second consequence {group) : 246 clock cycles
Third consequence (group) : 318 clock cycles
Forth consequence (group) : 390 clock cycles

~923—

(3) The clock frequency : 10MHz

Although the number of rules is 8 'x 8 = 64 rules according
to equation (10), the number has been 32 rules in the above
implementation. The reason is that the number of sub-rules has
been max(M,N)/2 = 4 rules because read and write for RAM,
by which the register file in the operational element is realized,
require more one clock cycle. Although the total number of
clock cycles is 8 x 12 + 8 x 9 = 168 clock cycles according
to equation (9), the number has been 174 dock cycles because
synchronization requires more six clock cycles. The throughput
has been 8 x 9 = 72 dock cycles according to equation (11).
Hence, the inference speed is :

10000k (H z)/72 (clockeycles) = 140k FLIPS (12)

4 Conclusion

With the aim of applying to high-speed control system, we
have proposed an architecture of fuzzy inference processor re-
alizing high-speed, high-resolution and being able to be imple-
mented with small hardware resources. On basis of the architec-
ture, a single-chip fuzzy inference processor has been fabricated
and the efficiency has been confirmed.

The authors wish to thank the electronic devices group of
the Oki electric Industry corporation, especially T.Katashiro,
for fabricating the circuits.

REFERENCE

(1) H.Watanabe, W.Dettloff and K.Yount : “A VLSI fuzzy
logic controller with reconfigurable, cascadable architec-
ture”, IEEE J. SC vol.25, no.2, pp.376-382, (1990).

(2) M.Sasaki, F.Ueno and T.Inoue : “7.5MFLIPS fuzzy
microprocessor using SIMD and logic-in-memory struc-
ture” ,Second IEEE Int. Conference on Fuzzy Systems,
pp.527-534, (1993).

—924—

