Fifth IFSA World Congress (1993), 947-920

A General Approach to Encoding Heuristics

Programmable Logic Devices

J.Y. Leong, M.H. Lim and K.T. Lau

School of Electrical and Electronic Engineering
Nanyang Technological University
Nanyang Avenue, Singapore 2263

Tel: 065-799-5408 Fax: 065-791-2687
E-mail: emhlim@ntuvax.ntu.ac.sg

Abstract

Various forms of hardware alternatives exist for the implementation of
fuzzy logic controllers. In this paper, we describe a systematic
framework for realizing fuzzy heuristics on programmable-logic-devices.
Our approach is suitable for the automated development of fuzzy logic
controllers.

Fuzzy logic, fuzzy controller, logic minimization and
programmable logic devices.

Keywords:

1. Introduction

Various forms of hardware alternatives exist for the implementation of
fuzzy logic controllers (FLC). Designers of fuzzy systems may opt to
realize a FLC with decision making centred around a fuzzy inference
processor [1]. Alternatively, one may consider using a general purpose
microprocessor or microcontroller to execute the assembly codes of a
FLC. Usually, the assembly codes are automatically generated from the
fuzzy rules specified as high-level C programming codes. Each of the
two approaches has its own merits and it is therefore not appropriate to
assess qualitatively which is better. Generally speaking, the performance
requirement (not necessarily the speed of inferencing) should be the
major consideration in deciding the medium to realize a FL.C.

Programmable-logic-devices (PLLD) can be considered as another class
of hardware alternative for realizing FLCs. We feel that the PLD
approach offers the following unique advantages:

- For consumer products, PLD is an attractive altemative. Semi-
custom programmable-logic-array (PLA) simplifies the
electronics and the cost incurred is justifiable by the high
production volume.

- PLD offers a sense of copyright protection. It is difficult to
decode the fuzzy rules encoded into a PLD. Proprietary control
strategy is therefore not so visible once programmed into a
PLD.

- PLDs are capable of performing fuzzy inference at very high
speed since every fuzzy logical inference is subjected only to
access time delay.

In this paper, we outline a general approach for realizing FLCs on
PLDs. We will first describe the overall approach from conceptualization
of the fuzzy heuristics up to the point where the table for programming
the FL.C onto a PLD is generated. We illustrate our approach by means
of the practical control example of a laundry machine by showing the
steps involved before the final PLD table is achieved. The resuit of the
actual control system based on the table generated will be described
before concluding,

2. The Overall Approach

Figure 1 shows the stages of development from knowledge acquisition

to implementation on silicon [3]. Initially, the control heuristics are
captured by means of a fuzzy editor. The rules can be created using a
normal text editor with the support of a fuzzy shell or it can be entered
as a fuzzy associative mapping table. The functionality of the fuzzy rules
and membership functions are verified using the fuzzy shell. Here, the
process of tuning may occur until a set of well-tuned rules and
membership functions are obtained.

The tuned knowledge is then converted to fuzzy relation matrices. The
inferencing is performed by applying max-min composition operation to
the fuzzified digital input generated by the event-sequencer and the
matrices. Output corresponding to each input is converted to its digital
representation by defuzzifying the fuzzy inference output. The resultant
event look-up table basically consists of exhaustive digital input/output
association.

The look-up table can be used for programming PLDs like ROM or
EPROM and is not efficient for programming PLAs. For realization on
PLAs, it is necessary that logic minimization is performed on the look-
up table. The reduced form of the look-up table is more manageable for
programming the AND/OR planes of PLAs. Typical reduction of 40%
or more of the table is achievable after logic minimization.

Figure 1: A framework for automated fuzzy systems implemeniation.

3. A Practical Example

In this section, we demonstrate the overall approach of implementating
a FLC on PLD. The problem in consideration is a laundry process. The
duration of a washing cycle will be determined based on two input
variables. One variable is the degree of dirtiness in the fabrics and the
other is the extent of greasiness. In actual washing machines, dirtiness
and greasiness can be determined using optical sensors.

3.1 Knowledge Acquisition

A set of fuzzy linguistic descriptions or rules for describing the laundry
process can be phrased as shown in Table 1. The cormesponding
membership functions of the fuzzy terms are shown graphically in
Figure 2.

—-917—

if <$greasiness is low_greasiness>

and <3dirtiness is low_dirtiness>
then <$time is very_short_time>

else

if <$greasiness is low_greasiness>

and <$dirtiness is medium_dirtiness>

then <$time is short_time>

else

if <$greasiness is low_greasiness>

and <$dirtiness is high_dirtiness>

then <§time is moderate_time>

else

if <$greasiness is medium_greasiness>

and <$dirtiness is or (low_dirtiness, medium_dirtiness)>
then <$time is moderate_time>

else

if <$greasiness is medium_greasiness>
and <$dirtiness is high_dirtiness>

then <$time is long_time>

else

if <$greasiness is high_greasiness>
and <$dirtiness is or (medium_dirtiness, low_dirtiness)>
then <$time is long_time>

else

if <$greasiness is high_greasiness>
and <$dirtiness is high_dirtiness>

then <$time is very long time>

Table I: Fuzzy linguistic rules for laundry machine.

Membership functions for (a) $dirtiness, (b)
Sgreasiness and (c) $time.

Figure 2:

Each of the rule can be expressed as fuzzy relation. For example, the
first rule can be represented by two fuzzy relations "low_greasiness —
very_short_time" and "low_dirtiness — very_short_time". We will refer
to the numerical representation of the fuzzy relation as implication
matrix. Many methods of computing the implication matrix exist. The
simplest and most commonly used is the cartesian product:

R, ;=AxB)
The membership values of the matrix can be computed as follows
Bp @, v) = min (g, @), py () @)

where A and B are fuzzy subsets of the universe U and V respectively.
For all the seven rules, 14 implication relations or matrices can be
obtained. The implication matrices corresponding to the first rule are
depicted in Table 2.

3.2 Composition Operation
This is illustrated by equation (3) where given an input A’ and the

implication matrix A — B, we can compute the output B by means of
max-min composition.

A A-~B B
b, by, ‘n Cin 3
b, b,, € Con
[, - a,] - ~ [- 4l
bml : bmn cm] cmn

In equation (3), ¢; = min (a, by} and d; = max (c;, ¢y, ... ¢,,) for I <
i <mand I £j < n The operator "O" denotes fuzzy max-min

composition.

0.01.00.00.00.00.0000.0000.0000000
0.0080.00000000.00.000000.00000
00060.00.00.0000.000000.0000.000
00040.00.00.00.0000.000000.00000
00020.00.0000000000000000000
0.00.00.00.000000.0000.6000.0000.0
000.00.00.0000.00.000000.0000000
0.00000000.000000000000.00.000
0.0000.00.00000000.0000000000.0
000000000000000.0000000000.0
0000000.00000000.00000000000
low_greasiness — very shori_time
001.000000000000000000.00000
000800000.000000000000.00000
000600000000000.00.00.0000000
00040000000.0000.000000.00000
00020000000.0000000000.00000
0000000.00.00.000000000000000
0.00.00.00.000000.0000.0000.00000
0.0000.0000.00.0000.00.00.0000000
000.00.00.000000000000000000.0
0.000000.0000.0000000000.00000
0000000.00000000.0000000000.0
low_dirtiness — very_short_time

Table 2: Implication relations and matrices of a fuzzy rule.
3.3 Aggregation Operation

The inputs are matched against the if-part of every single rule. Each rule
will fire accordingly, depending on the degree of matching between the
inputs and the left-hand side of the rule. In addition, each rule,
depending on how strongly it has fired, may affect the final conclusion
to various extent. Therefore, a method of “consolidating™ the conclusion
deduced by each rule is required. This process is known as aggregation.
In its simplest case, fuzzy aggregation can be achieved by a max
operation. Table 3 outlines the fuzzy aggregated outputs for all input
combinations. Each input nybble is associated with an element in the
appropriate set of membership functions.

3.4 Defuzzification Process

It is common to use the centre of area to defuzzify a fuzzy conclusion.
The centre of area can be computed as follows:

Y ugm) - m,
COA. = ‘_’_—__- O]
Z Bem)

i=l

where n is the number of elements in the consequence universe which
is characterized by the membership function s and members m.. A list

—918 -

of defuzzified outputs can be obtained from the fuzzy aggregated
outputs. For comparison, two different resolutions of defuzzified outputs
are presented. The 4-bit defuzzified output represents the integer part of
the centre of area calculated whereas the 8-bit counterpart reflects the
integer part of the centre of area which is pre-multiplied by 10,

Referring to Table 4, it is not difficult to appreciate the benefits of
having a less resoluted output. On the contrary, if crucial, the fractional
part of the defuzzified output could be exploited to enhance specificity.
To a greater extent, one might even try to increase the functional
membership resolution for better accuracy. Nevertheless, it is up to the
individual for the final implementation, bearing in mind that off-the-shelf
PLA might not come in handy for odd bit size.

$greasiness 3dirtiness Fuzzy Aggregated $time

S

%(]) 0000 0.3 (1) g gg 88 gg gg 3(2) gg g(O) 0.3 83 implementation of the PLD [2). A substantial speedup is possible when
0000 0008000.00.00.002000.0000. jor versi ili
0010 0000 0.0 0.6 00000000 0400000000 faster or superior versions of the Xilinx FPGA are used.
0011 0000 000400000.000060000000.0 , .
0100 0000 0.0020.00000000800000000 Product Input Variable 4:Bit Quipug
0101 0000 000000000.00.01.000000000 Term $areasiness 3dirtiness Function

1 0000 000X 0010

2 0000 00X0 0010
0101 1010 00000.00.00.0000010000000 3 0001 00XX 0011
0110 1010 000.0000.00000000800000.2 4 000X 0011 0011
0111 1010 0000000000000006000004
1000 1010 0000000.000000004000006
1001 1010 000.00.00.000000002000008
1010 1010 000.0000.000000000000010 72 1000 1010 1011

73 1010 1001 1100
Table 3: Aggregated outputs for all possible input combinations. ;; 58% ﬁgfg Hg?

Sgreasiness $dirtiness 4-Bit Defuzzified $time 8-Bit Defuzzified $time

4. Application Results

A 3-D plot of the control surface which characterized the PLD FLC is
given in Figure 3(a). The corresponding contour plot is also shown in
Figure 3(b). The X-axis of the time-contour plot represents greasiness
while the Y-axis denotes dirtiness. We can see from both plots that the
solution space of the problem is well defined.

Qualitatively, no difference in performance would be observed between
a conventional fuzzy controller and a fuzzy PLD controller of the same
resolution, if given the assumption that both are able to provide the same
inferencing throughput. However, this assumption could only be valid if
a comparatively rapid fuzzy inference processing hardware strategy is
available. In terms of speed, a rate of 50 MFLIPS (Fuzzy Logical
Inferences Per Second) is achievable based on the Xilinx XC3000 FPGA

Product Input Variable

0000 0000 0010 00010100 Term Sgreasiness $dirtiness Function
0001 0000 0011 00011110

0010 0000 0100 00101000] gooa. ooox goororea
0011 0000 0101 00110010 3 0001 O0XX 00011110
0100 0000 0110 00111100 y ooox oor) ooraaae
0101 0000 0111 01000110

0101 1010 1010 01100100 2 f%{) fgﬁ orlong
0110 1010 1010 01100100 ; o0 e A
0111 1010 1011 01101110 it N o
1000 1010 1011 01101110

1
fg?é 5858 %2(1) ?0%(1)(0)(1)8 Table S: Truth tables of defuzzified owputs after logic minimization.

8-Bit Qutput

Table 4. Defuzzified outputs for all possible input combinations.
3.5 Boolean Logic Minimization

The minimum PLD size required for programming Table 4 is at least (¢
+4)x (11 x 11) x 4 bitsor (4 +4) x (11 x 11) x 8 bits {inputs x
product terms x outputs), depending on the precision of the defuzzified
output selected. An crdinary ROM would more than satisfy the need if
the speed of access is not critical. For PLA implementation, however,
significant savings would be possible by adopting a less explicit output.
PLAs are also preferred over ROMs or PALs because of the greater
flexibility offered in configuring both the AND and OR planes.

However, the extent of logic minimization possible is case dependent
and can varies betwezn 40% to more than 70% of the original size. One
contributing factor is the choice of an output resolution which can alter
the final PLD size significantly. Table 5 shows the results of logic
minimization done using the defuzzified outputs from Table 4. In
comparison, Table 5 would dictate a PLA configuration of at least 8 x
75 x 4 or 8 x 75 x 8 bits which is about 61 .98% of the original 8 x
121 x 4 or 8 x 12] x 8 bits.

5. Conclusions

Although an example of encoding fuzzy heuristics on PLDs was
introduced, the possibilities remained for exploration are almost endless.
Some opportunities include the implementation of custom fuzzy
operators, selective integration of desired fuzzy modules on the PLDs as
well as cascading of the PLDs to achieve parallel processing. Similar
endeavours on the software environment is also highly pragmatic. In this
paper, we demonstrate a systematic and versatile approach for
implementing FLC using PLAs.

References

{11 MH. Lim and Y. Takefuji, "Implementing Fuzzy Rule-
Based Systems on Silicon Chips”, IEEE Expert, February
1990, pp. 31-45.

{21 M.A. Manzou! and D. Jayabharathi. "Fuzzy Controller on

FPGA Chip“, Proceedings of the First IEEE International

~919—

3]

Conference on Fuzzy Systems, 1992, pp. 1309-1316.

J.Y. Leong, M.H. Lim and K.T. Lau, "Development
Strategy of Fuzzy Controller”, Proceedings of the Second
International Conference on Automation, Robotics and
Computer Vision, Vol. 2, pp. C0O.7.8.1-C0.7.84, 1992.

E
3
S0 60 70 80
Sgreasiness
(b)
Figure 3: Control surface of the PLD FLC in (a) 3-D plot and (b)

contour plot.

—920—

