Fifth IFSA World Congress (1993), 907-910

Traffic Fuzzy Control: Software and Hardware Implementations

M. Jamshidil, R. Kelsey2, and K. Bisset3

Iecap Laboratory for Intelligent & Robotic Systems, Deparment of Electrical and Computer Engineering, University

of New Mexico, Albuguerque, NM, USA

2 Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
3 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA

ABSTRACT

This paper describes the use of fuzzy control and decision making to
simulate the control of traffic flow at an intersection. to show the value
of fuzzy logic as an alternative method for control of traffic
environments. A traffic environment includes the lanes (0 and from an
intersection, the intersection, vehicle traffic, and signal lights in the
intersection. To test the fuzzy logic controller, a computer simulation
was constructed to model a traffic environment. A typical cross
intersection was chosen for the traffic environment, and the
performance of the fuzzy logic controller was compared with the
performance of two different types of conventional control. In the
hardware verifications, fuzzy logic was used to control acceleration of
a model train on a circular path. For the software experiment, the fuzzy
logic controller proved better than conventional control methods,
especially in the case of highly uneven traffic flow between different
directions. On the hardware side of the research, the fuzzy acceleration
control system showed a marked improvement in smoothness of ride
over crisp control.

1 INTRODUCTION

There are two types of conventional controllers for traffic flow
systerns: one uses a preset cycle time to change lights; the other com-
bines preset cycle times with proximity sensors which can activate a
change in the cycle time or the lights. In the case of a less-traveled
street which may not need a regular cycle of green lights, a proximity
sensor will activate a change in the light when cars are present. This
type of control depends on having some prior knowledge of traffic
flow patterns in the intersection so that signal cycle times and place-
ment of proximity sensors may be customized for the intersection.

Fuzzy logic control, an alternative to conventional control, can
control a wider array of traffic patterns at an intersection. A fuzzy-
controlled signal light uses sensors that count cars, instcad of
proximity sensors which only indicate the presence of cars. This
provides the controlier with traffic densities in the lanes and allows
better assessment of changing traffic patterns. As traffic distributions
fluctuate, a fuzzy controller can change the signal light accordingly.

2. SOFTWARE IMPLEMENTATIONS

21 Simulation

The computer simulation was written in the C++ computer
programming language using object-oriented programming techniques.
Object-oriented programming allows the simulation to be built in a
modular fashion, malking it both expandable and easily maintainable.
Thus new features are casily added to the simulation or current
features easily modified with little impact on the rest of the program.

The graphics portion of the simulation was written using the X
Window System as described by Nye [1,2], specifically the Xt
Intrinsics library and the Athena (Xaw) and Hewlett-Packard (Xw)
widget libraries, collectively called the X Toolkit. The use of the X
Toolkit provides a se1. of widgets (graphical objects such as buttons or
sliders) which can be combined to create the simulation. Their use
allows the low-level graphical details to be ignored.

The X Toolkit (like X Windows in general) is event-driven. The
simulation responds 1 events, such as a button press, generated by the
user. Any one of a number of actions can be performed at any time 0
greatly enhance the interactive nature of the simulation.

The crux of the simulation problem is the modeling of traffic flow
to mimic reality, specifically the motion of the vehicles relative to one
another. Physical equations were used to describe the motion of a car
based on the car immediately in front of it (the leading car). Equation
(1) describes the acceleration of a car based on the velocitics and

positions of the car itself and the leading car. This is a time-delay
differential equation which comes from traffic flow theory presented
by Haight [3), Montrol [4], Morris, ct al. [5], and Malek-Zavarei and
Jamshidi {6]. Equations (2) and (3) are standard classical physics
equations for the velocity and position of an object based on the
object's acceleration. v(t) and x(t) are the velocity and position,
respectively, of the car at time 7. vi(t) and x'(t) are the velocity and
position of the leading car. < is the driver reaction time and v is the
free velocity of the car (the velocity at which the car would drive
without interference from other cars).

a(t+t ) =4 vOv() V] / [xQ) - X' ©)2] +02(v free - v(1) (1)
v(t) = v(i-1) + a()dt (V)
x() = x(t - 1) + v()dt + (172) atydr 2 1)

The free velocity of each car is randomly set from a normal
distribution with a mean of the "posted” speed limit. As observed in
reality, this provides the simulation with cars moving at the speed limit
and cars moving both faster and slower than the speed limit. The
driver reaction time, T, is the time expended when a driver sees a
disturbance, the brain processes the information, and the driver takes
appropriate action. This time is equal to 1.5 seconds.

The simulation has a variety of modes and other configuration
inputs which may be selected from an input file when the program is
executed. These inputs include the type of controller (timed,
proximity, or fuzzy) which may be used to control the traffic signal;
whether to use graphics or batch mode; flow rates; percentage of
turning cars; and how long (in simulation time) the simulation should
run.

Flow rate in cars per hour may be specified separately for cach of
the four lanes. This parameter may be cither a single value (cars per
hour) or a series of flow-time pairs (two numbers: flow and time). I_fa
single value is given, that flow rate is then used for the entire
simulation run. The cars are actually generated and entered into the
simulation randomly to obtain the specified flow rate, and to make the
flow pattern or distribution of cars less uniform. The flow-time pairs
give the flow rate at certain times during the simulation run. The
simulation interpolates between these pairs to provide a smooth
transition between flows. Flow-time pair inputs are useful for
determining how the controller will perform in a given intersection
over the course of an entire day or other time period.

The simulation has two operating modes: a graphics mode dis-
plays a scaled traffic environment, and a batch mode executes without
graphics. The graphics mode animates the movement of cars in lanes
directed to and from the intersection. and displays statistics about cars
which have moved through the traffic environment. These statistics
include flow rate (cars per hour), average waiting time, and average
driving time. The average waiting time (in seconds) is an average of
the time all cars spend at zero velocity in the simulation. The average
driving time is the average of the time all cars completing the simula-
tion spend driving the length of the simulation. The fuzzy controlier
version of the graphics simulation aiso has "pop up” windows avail-
able that display: the degree of membership for each of the inputs,
which fuzzy rules are being fired, and a list of the fuzzy rules. This
information gives insight into the workings of the fuzzy controller.

The simulation’s graphics mode allows interactive change gf
certain inputs originally set in the input file, including the flow raie in
each direction and the cycle time length of the lights. Due to the
computational overhead of generating graphics, the batch mode can
execute as much as ten times faster than the graphics mode. This
makes the batch mode ideal for running exhaustive tests using



@

Figure 1. Traffic Cross Intersection.
different traffic patterns for the three different controllers.

The statistics generated by the simulation are used to calculate a
cost function (equanon 4) as a means of evaluating fuzzy controller
performance against that of the conventional controllers. Waitmean is
the average waiting time, Drivemean is the average drive time, and
k(Carsout/Carsin) is the number of cars exiting and entering the traffic
eavironment. Cost is a constant which is equal to 100.

COS!BWﬂiKmn/k(Cal'sOm/Cﬂ'Sin)Dﬁvemm @

2.2 Fuzzy Controller

A fuzzy logic controller was designed for a typical cross intersection
traffic environment with a lane directed to and from the intersection at
each compass point, as shown in Figure 1.

The fuzzy logic controller was implemented using the Togai
InfraLogic Fuzzy C Compiler [7], which accepts a fuzzy source code
file as input and compiles this file into a module of C source code. The
fuzzy source code, much like natural language, describes each input
and output to the fuzzy controller and the fuzzy membership functions
associated with those inputs and outputs. Also described with natural
language is the fuzzy rule base which maps the combinations of inputs
to the outputs. The C source code generated by the Fuzzy C Compiler
can then be compiled (by a C compiler) within a C program or as a
separate routine to be called by other programs.

There are three inputs into the fuzzy controller, the average
density of traffic behind the green lights, the average density of traffic
behind the red lights, and the length of the current cycle time. The four
membership functions that describe the densities of traffic at the green
and red lights are labeled Zero, Low, Medium, and High; a sample of
these functions appears in Figure 2. 'I'hemembcrsh:pfuncuomformc
green and red densities were chosen to be different because the
densities of the cars in those two cases will be different: cars stopped
at a red light are much closer together than cars moving through a
green light, therefore the density of the cars at the red light will be
higher than that of the cars moving through the green light. (This detail
was actually discovered while observing the graphic display of the
simulation. The first version of the fuzzy logic controller used the
same membership functions for green and red densities.) The third
input, current cycle time, has three membership functions describing
time in seconds: Short, Medium, and Long; their membership
functions are similar to those in Figure 2.

The densities are taken from two sensors placed on the road, one
at the intersection and the other 150 feet before the light. The rear
sensor increments a counter every time a car passes over it while the
forward sensor decrements the same counter. In this way a count is
obtained of the number of cars in the 150 feet before the light. This
contrasts with conventional control, which places a proximity sensor at
the light and can sense only the presence of cars waiting at a light, not
how many cars are waiting.

The output of the fuzzy controller decides whether to change the
state of the light (for example, green north-south to green cast-west) or
keep it the same. The membership functions for change are No,
Probably No, Maybe, Probably Yes, and Yes. These functions
represent a degree (fuzzy value) of a binary value, 1 being Yes and 0
being No, and were chosen similar to Figure 2.

Other attempts at fuzzy control of traffic signals, particularly by
Gallegos and Nguyen {81, have used the fuzzy controller to make
incremental changes in the times of the cycle in each direction. We
rejected that approach because a controller which could make immedi-
ate changes to the light based on the current conditions was preferable.

The fuzzy rule base maps iix: combination of the inputs to the
output to decide whether to change the light. In the fuzzy source code

it

¢ 1 2 3 ] 17
Number of Cars

Figure 2. Membership Functions: Traffic Densities at Green Lights.

file the fuzzy rule base is a list of if/then statements. The number of
rules is equal to the number of input combinations. For example, if
there are two inputs with three membership functions each, then the
number of rules will be nine.

It is possible to scale down the number of fuzzy rules when
certain input combinations are unnecessary. The fuzzy traffic
controller design presented would yield a rule base of 48 rules, but for
certain combinations the cycle time input has no meaning. For
example, when the green traffic density is zero and the red traffic
density is zero then the input for time does not matter. The desired
output (change) is the same for any amount of time. Thus one rule
takes the place of three.

23 Testing and Results

Testing of the fuzzy controller involved the simulation of 625 different
parameter sets. Figure 3 shows the traffic flow for a 12-hour period of
the simylation. These parameter sets vary the flow of traffic in each of
four lanes from O to 1200 cars per hour, with an increment of 300
(hence, 625 combinations). Each of these parameter sets is simulated
for one hour of simulation time; the generated statistics include the
average flow rate (cars/hour), average driving time, and average
waiting time. Results of the fuzzy controller simulations, in the farm
of the statistics, are compared with the same 625 parameter sets using
a conventional controller (cycle time controller). Overall, the fuzzy
controller shows a modest increase in average flow rate. In particular,
when traffic densities are highly uneven, the fuzzy controller shows a
substantial increase in average flow rate. More significant, perhaps,
than the average flow rate is the comparison of the average waiting
time. For the fuzzy controller, the average waiting time decreased by
49 percent when compared with the conventional controller.

Another set of parameter files was constructed to simulate a "day
in the life" of a traffic signal. The objective was to simulate and
observe how well the fuzzy controller handled traffic during the span
of a 12-hour day, including morning rush, morning lull, lunchtime
rush, afternoon lull, "school's out" rush , and evening rush. Again, the
fuzzy-controller simulation was compared with a conventional-
controller simulation. The fuzzy controller handled 10 percent more
cars than the conventional controller, and also showed an 8 percent
increase in average flow rate, a 64 percent decrease in average waiting
time, and a 29 percent decrease in maximum waiting time.

The 625 different combination simulations were useful in
identifying strengths and weaknesses in the fuzzy controller. Using
this information, we were able to modify aspects of the fuzzy
controller and improve its performance. The "day in the life”
simulation and the corresponding results are more interesting because
they provide a "real world" example, which could easily be applied
and modified to simulate an actual intersection in a city.

The test suite of 625 parameter sets was eventually collapsed to 69
sets due to the nature of the cross intersection and the duplicated traffic
patterns in each lane. Since the inputs are the same for each of the four
lanes and the traffic environment is symmetrical, it is unnecessary to
repeat the traffic patterns for each lane. The results of the 625
parameter sets showed little to no difference in repeated traffic pattemns
from one lane to another. This is to be expected. What little difference
was observed could be explained by the random nature of the input
traffic flows.

The 69 parameter sets vary traffic flow from 0 to 1400 cars per
hour with an increment of 350. Each of these parameter sets is also
simulated for one hour of simulation time. This scaled-down test suite
allows evaluation results with less computational time and no loss in
coverage of the problem space.

Later testing included an improved conventional controller which
combined proximity sensors with set cycle times. This controller
performed much better than the set cycle time controller, but was still
unable to outperform the fuzzy controller.

The traffic environment underwent some changes in a later
version of the simuiation, to better reflect reality. The changes all
amounted to re-scaling of certain measurements, including the size of

—908—



Fussy —m
Prosimity ~—
Timea - -~

s 120 180 240 300 360 420 483 540 €00 40 120

Time (minutes)

Figure 3. A Comparison of Fuzzy and Non-fuzzy Traffic Controllers.

cars, length and width of lanes, and sensor placement in the lanes.
Additional testing, using the new version of the simulation, showed no
relative change in controller performance among the three different
controllers.

In Figure 3, comparison of the costs (waiting times) of the fuzzy
controller and two standard methods clearly shows that the fuzzy
controller drastically improves on the waiting times and thus the costs.

3. HARDWARE IMPLEMENTATION

31 Introduction

This section describes the use of fuzzy logic in controlling the
acceleration of a model train. Velocity is a property which humans do
not notice~it is acceleration that can cause passenger discomfort. By
selecting a comfortable acceleration and maintaining it as a constant, a
smooth increase in velocity and thus a smooth and comfortable ride can
be achieved.

The acceleration problem, maintsining a constant acceleration
and/or deceleration for a moving object (for example, a train), has a
fuzzy nature. Fuzzy logic was chosen as a means of control for this
problem, the idea being that a constant acceleration must be achieved as
quickly as possible and then maintained. This is also true of
deceleration when bringing the train to a stop. We asked: can fuzzy
logic control do betler than a human operator in this area?

The first part of the problem involves the selection of a
comfortable acceleration constant. This constant is obviously different
for a model train than a real train. We identified a comfortable
acceleration by visually inspecting a water cell being pulled by the
model train: at the correct constant acceleration, the water level in the
cell maintains an even surface during increase in the train’s velocity.
From this visual state the acceleration is calculated with known time
and distance. Once the acceleration is selected, the more interesting
Pproblem of control can be explored. The following sections describe the
hardware involved in prototyping the problem and solution.

32 Model Train Layout

The mode! train travels on a circular track; a circle is used because any
angular momentum experienced by the train becomes uniform in a
circle. (An oval, for example, would contribute angular momentum
only at the curved ends of the oval.) The circle is three feet in diameter
from center of track to center of track. While circling, the train pushes
an amm which turns an optical encoder at the center of the track circle.
The optical encoder generates a number of pulses per revolution. These
pulses are fed to a computer which calculates the velocity and
acceleration of the train. The arm and optical encoder climinate the
need for attaching wires directly to the moving locomotive. Thus there
is no need for an electrical umbilical cord which could become tangled
during running of the train. The optical encoder sits at the center of the
circle; an arm connects the locomotive and optical encoder. The model
locomotive pulls a gondola car which has a water cell mounted inside;
mounted to the bottom of the gondola car, between the wheel bases, is a
lead weight which helps balance the weight of the water and water cell.

The computer ases the difference of the selected and current
accelerations as an input to the fuzzy controller. The output of the fuzzy
controller is an amount of change in acceleration, which might be an
increase, a decrease, or nothing. This actually results in the computer
increasing, decreasing, or not changing the power to the train.
Deceleration follows the same scenario, except that the selected value is
negative.

! 1 1 ! 1 1 1 I '
-30 -20 =10 -5 ¢ g5 10 20

change —->
Figure 4. Membership Functions for the Train's Input Power Change.

a3 Computer Input

The movement of the train pushing the arm turns the optical encoder.
The rotation of the optical encoder generates digital pulses at the rate of
128 pulses per revolution, or one pulse every 2.8 degrees. The pulses
accumulate in a six-bit counter which eliminates the need for the
computer to be constantly reading pulses. Also, since the pulses are
digital, thm-, is no need for an analog-to-digital conversion. The six-bit
counter is constructed of two cascading four-bit counters. Through
experimentation, it was determined that one four-bit counter was
msuf!icicm for counting pulses when the train was moving at full
velocity. The train's top velocity generates more than 16 pulses per read
(strobe of the game and serial ports) by the computer. The six-bit
counter allows accumulation of a maximum of 64 pulses.

The six-bit counter is connected to the computer through the game
port (four lines used) and the serial port (two lines used). This gives six
lines for reading the six-bit value from the counter. Use of the game and
serial ports simplifies the interface between the computer and the input
from the train. No communications protocols are necessary.

34 Fuzzy Controller

The fuzzy controller consists of onc input and one output. The input to
the controller is the difference in the selected acceleration and the
train's current acceleration. The membership functions for diff (the
input) are Very Negative, Negative, Zero, Positive, and Very Positive
(VN,N, Z, P, and VP, respectively) and are similar to those in Figure 2.
The output from the controller is an amount of change in power. The
membership functions for change (the output) are Large Decrease,
Small Decrease, Zero, Small Increase, and Large Increase (LD, SD, Z,
SI, and LI, respectively) and are shown in Figure 4. The fuzzy rule base
mapping the input to the output is shown in Figure 5. The number of
rules is determined by the number of membership functions in the
input, which is a total of five. These membership functions and rules
will work for deceleration as well because the sclected deceleration
value will be the negative of the sclected acceleration value.

IF diff is Z THEN change is Z

IF diff is P THEN change is SI

IF diff is VP THEN change is LI-
IF diff is N THEN change is SD

IF diff is VN THEN change is LD

Figure 5. Fuzzy Rules for the Train Acceleration Control System.

s Computer Output

The output from the fuzzy controlier (change in power) is added to the
current power being output to the train. The computer represents this
range of power (in volts) as a numerical range between zero and 255,
and outputs a value in this range via the parallel port to a digital-to-
analog (D/A) chip. Use of the parallel port for output from the
computer again simplifies the interface and avoids the need for
communications protocols. The D/A chip converts the eight input lines
1o one analog output line. The output from the chip is a voltage in the
range of zero to 5 volts and is connected to a power regulator circuit. A
15-volt transformer serves as the power supply for the train. This
supply is varied by the power regulator circuit as directed by the D/A
chip output. The power regulator circuit has an output (to the train
track) in the range of 4 10 10 volts along with an increased current to
drive the train. Experimentation showed that 4 volts is just below the
amount needed to keep the train moving.

36 Software Interface

The software interface consists of three parts: the input module, the
fuzzy controller module, and the oversall driver program. The input
module and driver program are written in C compiled with the Turbo C
compiler. The fuzzy controller module is written in Togai Infral.ogic
fuzzy source code and compiled into C with the Togai Fuzzy C
Compiler [7). These programs are all executed on a personal computer.
The input module reads the data lines from il counicr oif Lk game
and serial ports and builds the six-bit value representing the number of
pulses. A driver program was written in C to go with the Togai Fuzzy C

009 —




language code. The driver program initializes everything, computes the
acccleration, calls the fuzzy controller, and writes the output to the
parallel port.

3.7 Results

The results are heavily based upon visual inspection of the water cell
and observation of the train itself. The hope was that the surface of the
water in the water cell would angle "uphill” as the train increased
acceleration. When a constant acceleration is achieved the water should
level itself, and when deceleration begins the water level should angle
"downhill.” If this state actually occurred, however, the angle was so
small it could not be observed; the maximum velocity was not
large enough. Because of this it was also difficult to select an accelera-
tion for the model train which represented a "comfortable™ (for humans)
acceleration in real trains. The model train accelerates to maximum so
quickly that there is not much to observe.

Two methods of acceleration increase were observed, fuzzy
controlied and crisp proportional controlled. The crisp control method
is analogous to setting the "throttle” wide open. The train made a
"jackrabbit” start and the water in the water cell showed erratic
movement—similar to driving a car while holding a cup of coffec: the
coffee sloshes around or even spills when the car abruptly stops or
starts. With the fuzzy controller, the train's acceleration was much less
abrupt. The small amount of movement in the water cell was much less
than that observed during crisp control.

38 Problems and Limitations

The main problem with this experiment is that of granularity. The
computer measures its internal time in clicks. There are 18.2 clicks per
second, which calculates to approximately 0.05 seconds per click. In
0.05 seconds at full speed the train travels approximately two pulses.
More accurate accelerations could be calculated with more accurate
timing of the pulses. This would require a computer whose internal
clock generated more clicks per second. Although the lack of
communications protocols simplifies the design of the system, it also
causcs a potential problem: that of reading the values of the counter
through the game and serial ports. It is possible for the counter to
receive a pulse during the time the computer is reading from those
ports, causing an erroneous value to be input to the computer. Hence, a
check was added to identify and discard any calculated velocities which
appeared out of range (faster than the observed maximum velocity of
the train). Another limitation involved the power regulator circuit.
Although the power supply offered a maximum voltage of 15 volts, the
power regulator circuit was able to vary a range of only 4 to 10 volts.
An improved power regulator circuit could obtain smoother control of
the train and allow the train to be accelerated over a longer period of
time. This would allow the fuzzy control a greater effect.

4. DISCUSSIONS AND CONCLUSIONS

Improvements were made to the fuzzy controller after study of the test
data. The number of inputs was increased to five: two green traffic
densitics, two red traffic densities, and the time input. Previously, the
green input density was an average of the traffic densities in the two
green directions. The same was true for the red input density. By
making an input for each green direction and each red direction, we can
obtain more accurate traffic densities. This change in the number of
inputs increases the number of possible rules, but through the use of
"and” and "or" operators, fuzzy input values can be combined in one
rule. This technique kept the number of rules from increasing. The
controller was also improved by making minor changes to the shapes of
some membership functions in the controller inputs. These changes
were made after careful study of the test results and observation of the
graphic display of the simulation. Each change to a membership
function was followed by additional testing to verify performance.

By way of preliminary conclusions, the initial results show that
larger quantities of traffic are "handled” by fuzzy control methods than
by conventional control methods. (A "handled” car is one that has
exited the simulation after having passed through the intersection.)
Fuzzy control shows greatest improvement over conventional methods
when the traffic flow is highly uneven. The fuzzy controller can change
the lights as necessary to achieve the maximum throughput, rather than
be limited to a set cycle time for changing signal lights. Another,
perhaps more important, result is that the average time spent waiting in
traffic decreases with the use of fuzzy control versus conventional
control. This means individual cars spend less time waiting and more
time moving.

Fuzzy control has other benefits as well. The fuzzy controller
handles a wide range of continually changing waffic patterns. This

characteristic makes the fuzzy controlier re-usable, a quality not shared
by conventional controllers. This concept, even with modest or no
improvement in controller performance, makes a fuzzy controller more
desirable. Far example, all cross intersections may have the same fuzzy
controller without requiring individual controller configurations based
on observations at an intersection. Also, the cost of a traffic-control
system may actually decrease because of the system’s re-usability.

For the future, the fuzzy controller is combined with a neural
network to construct an adaptive fuzzy/neural controller. An adaptive
controller such as this is similar to a standard fuzzy controller, with the
exceplion that the membership functions are not fixed but can change
over time. The controller observes the results of its actions and attempts
to improve its performance based on these observations. An adaptive
controller thus shows promise by being able to leam the peculiarities of
a particular intersection while retaining the ability to handle unexpected
situations.

Hardware implementation of the fuzzy control of the model train
does offer an improved method of controlling the acceleration. The
desired amount of improvement was not achieved, but improvement
over an "open throttle” was observed. Fuzzy control of the train
displayed a smoother movement from "rest” to "maximum velocity”
and back to "rest.” The small scale of this experiment affected what
could be observed and the problems discussed in the previous section
dampened the potential results. Further refinements are under way for
this fuzzy acceleration contro! of a model train.

REFERENCES

{1] Nye, A., XIib Programming Manual. Sebastopol, California: O'Reilly and
Associates, Inc., 1988.

{2] Nye, A. and T. O'Reilly, X Toolkit Intrinsics Programming Manual.
Sebastopol, California: O'Reilly and Associates, Inc., 1990.

[3] Haight, Frank A., Mathematical Theories of Traffic Flow, New York:
Academic Press Inc. 1963.

[4] Montrol, E. W., “Acceleration Noise and Clustering Tendency of
Vehicular Traffic”, Theory of Traffic Flow, ed. R. Harman, New York:
Elsevier Publishing Company, 1961.

[5] Morris, R. W. J. and P. G. Pak-Poy, "Intersection Control by Vehicle
Actuated Signals®, Vehicular Traffic Science, ed. R. Herman and R.
Rothery, New York: American Elsevier Publishing Company, Inc. 1967.

{6] Malek-Zavarei and M. Jamshidi, Time-Delay Systems - Analysis,
Optimization, and Applications, North Holland Publishing Co.,
Amsterdam, 1986.

{7} Togai Infralogic, Inc. (1990), Fuzzy C-Development Systems User’s
Guide, Irvine, CA.

{8] Gallegos, R. and T. Nguyen, "Fuzzy Logic Traffic Application”, CAD
Laboratory Internal Report, University of New Mexico, Albuquerque, NM.
1991,

—910—



