Fifth IFSA World Congress (1993), 834- 837

HARDWARE IMPLEMENTATION OF AN AUTONOMOUS FUZZY CONTROLLER

Sujeet Shenoi and Kaveh Ashenayi

Center for Intelligent Systems, Keplinger Hall
University of Tulsa, Tulsa, Oklahoma 74104, USA

Abstract: This paper describes the implementation of
an autonomous fuzzy logic controller. The controller is
endowed with bastc control principles and learning con-
structs which enable it to autonomously modify its con-
trol policy based on system performance. The controller
lies dormant when system response i3 satisfactory but it
rapidly initiates adaptation in real time when adverse per-
formance is observed. The autonomous fuzzy controller 1s
implemented on an Intel MCS-51 series micro-controller
board using an inezpensive §-bit Intel 8031 processor. The
11.06 MHz micro-controller operates at a rate exceeding
200 “global” look-up table reinforcements per second. This
is important when developing practical on-line adaptive
controllers for fast systems. It is also significant because
an initial controller look-up table could be incorrect or
non-ezistent. The relatively high learning rate enables
the controller to learn to control a system even while it
is controlling it.

1. Introduction

The implementation of on-line adaptation in fuzzy
logic contrcllers in real time has immense practical value
[6,9]. The resulting autonomous controller would contin-
uously observe system performance while implementing
its control actions and would use the outcomes of these
actions in adjusting its control policy [6,8]. It would be
designed to lie dormant when system behavior is satisfac-
tory but would rapidly and autonomously initiate adap-
tation in real time when adverse performance is observed.
Such an autonomous controller could control systems in
real time without prior knowledge of their characteristics
and possibly even without an initial control protocol. It
could therefore deal with individual variations in system
characteristics and compensate for degrading characteris-
tics caused by system wear and tear. It could also learn
to control difficult-to-model or black box systems.

We adopt a look-up-table-based fuzzy logic control
configuration. A typical table-based controller employs a
look-up table generated off-line from common-sense rules
using a standard fuzzy inference algorithm [2,7]. The ini-
tial common sense rules represent “source code” [1]. The
look-up table corresponds to “compiled object code” tar-
geted for real-time control. The look-up table for a two-
term SISO controller is a discrete function mapping error

and error-change inputs to the appropriate controller out-
put. This generates a 3-dimensional control surface.

Compared with other fuzzy control configurations [9],
the basic look-up-table-based controller requires minimal
computations for real-time operation. However, consider-
able computational overhead is involved in implementing
on-line adaptation in such controllers. This is because
the entire look-up table has to be modified after each
change to a linguistic rule or membership function during
adaptation [4,5,8]. Using the compiler analogy, controller
adaptation involves the production of new object code by
repeatedly recompiling the modified source code.

Qur strategy for efficiently adapting an initial control
policy embodied in a look-up table closely models the be-
havior of optimizing compilers [3]. As with optimizing
compilers, the repeated modification and recompilation
of source code can be bypassed by modifying the object
code itself. Controller adaptation thus involves “hammer-
ing” and/or “stretching” the control surface itself. The
changes to the control surface must reflect the desired
modifications in the source code.

We have previously developed on-line adaptive algo-
rithms combining input gain tuning and direct table mod-
ification [5,8]. A look-up table is modified using a “global”
reinforcement learning technique which adjusts clusters of
table entries at a time. In the initial stages of adaptation
look-up table reinforcements have a coarse character; the
changes are gradually localized to smaller clusters. The
clusters or “contexts” [5] for reinforcement are generated
off-line using initial common sense rules or membership
functions defining the linguistic variables. In each case
the clusters incorporate control meta-knowledge. How-
ever, the membership function approach employs supe-
rior meta-knowledge as it is independent of the control
rules. This is significant because the initial rules might
be incorrect or sometimes even non-existent {8].

The autonomous control algorithm described here
advances our previous work in two directions. First, it em-
ploys fixed-size clusters for reinforcement which are inde-
pendent of the rules and membership functions. The sim-
pler strategy, geared specifically for hardware implemen-
tation, significantly reduces the computational overhead
of the previous algorithms and gives rise to more rapid
on-line adaptation. Second, the new algorithm enables

—834 -

the controller to autonomously trigger its own adaptation
based on its observation and evaluation of system perfor-
mance. Adaptation and performance monitoring engage
system-independent meta-knowledge. This enhances the
versatility and ultimate applicability of the autonomous
control hardware.

2. Autonomous Control Algorithm

The fuzzy logic control system has as input an (error,
error-change) pair corresponding to a single state variable,
and a single controller output. Actual analog errors and
error-changes are converted to digital values which are
scaled to values in a 13-point scale L3 = {-6, -5, ...,
-1,0,1, ..., 5, 6}. The controller look-up table thus has
169 (13x13) entries. We assume that the controller is
initially “vacuous” — the entire look-up table comprises
zero values. The goal of adaptation is to hammer and/or
stretch the control surface until satisfactory performance
is achieved. It is important to ensure that this surface is
smooth at all times, i.e., the values of neighboring look-up
table entries are always close to each other.

2.1 Sleep/Awake Transitions

At any instant the autonomous fuzzy controller is
either in a “sleep™ or in an “awake” state. In the sleep
state all adaptation is terminated and the controller only
monitors system performance. A “sleep-awake window” is
used to effect transitions from the sleep state to the awake
state. A transition to the awake state occurs when adverse
performance is observed for all sampling instants in this
window. It is important that the window be as narrow as
possible — preferably 1 sampling instant — to allow the
controller to quickly respond to adverse performance.

In the awake state the autonomous controller under-
goes adaptation as described below. Adaptation is ter-
minated when acceptable performance is observed for all
sampling instants in an “awake-sleep window.” This win-
dow can be made as wide as desired.

2.2 Performance Evaluation

The performance table in Figure 1 enables the au-
tonomous controller to assess its performance. This ta-
ble, which is divided into 7 zones, is symmetric along the
secondary diagonal. Zone 0 contains system states requir-
ing no corrective actions on the part of the controller — a
system in this zore is either at the set-point or is moving
towards it satisfactorily. Zones -3 and 3 contain states re-
quiring maximal corrective actions. The controller must
force a system in these zones to move as rapidly as possi-
ble towards the set-point. States in Zones -1 and 1 need
minimal correcticns. It is necessary to allow for reason-
able damping as the system is already close to the set-
point or is approaching it in a reasonable manner.

The performance table captures the notion of a “min-
imum tolerable response.” The further away system states
are from the desired trajectories the greater are the cor-
rections in the controller output. These corrections must
account for the distance from the set-point as well as
the rate of approach to it. A key advantage of the per-
formance table is that it embodies system-independent
knowledge. It can therefore be applied with minor ad-
justments to a variety of process systems or plants.

Change in Error

~ ~ N
. N N N
~ N
. [elslal3|2]1]e]1]|2]3]4|5]6
~6\ \\ \\\ N e‘
~ ~ 1T T
\\\ 5 AN S \\\ \\\ 0000)
4 N \\\ <. . .
—— \k___ SR Foon ey QS S N — .
N N ~
3. N . = %o R
N o
2 AN AN N AN 0\) N
. A :
— N < (J N
s % S,k / h :
: 0 N N/ N N N
\ N e e N N AN
m § 0, & ©
..1 N AN N A N
N N N N
\/ S N, AN
N S
-2 AN <>O¢ AN \\\ AN N
3 N (SN N N BN N
v N <> AN N \ A
;‘f'.,\% B N A I T O IS T AN I I
-5 ¢o N AN ~ AN
[PN T - R +
-6 l\,) N N AN AN
N
\\\ \\\ \\

Figure 1. Performance evaluation table.

2.3 Look-Up Table Modification

The table modification strategy uses three 169-entry
tables (same number as the look-up table). The “weighted
access count table,” “cumulative access count table,” and
“maximum access count table” model short- and long-
term memories which guide controller adaptation.

The weighted access count table records the number
of times each look-up table entry is “accessed” since its
last update. When the number of accesses of an entry ex-
ceeds a preset threshold, i.e., the entry repeatedly gives
rise to inadequate performance, its value in the look-up
table is adjusted. The access count of an entry is weighted
by its location in the look-up table. Entries in Zones -3
and 3 have the largest access count increments; entries
in Zones -1 and 1 have the smallest increments. Learn-
ing in a context is achieved by having increments prop-
agate within a 9-element cluster comprising the accessed
look-up entry and its 8 neighbors. States in Zone -3 or 3
cause the access counts for all cluster elements to be in-
cremented. Learning is more localized in Zones -1 and 1;
only the access count of the accessed entry is incremented.

When the weighted access count of an entry exceeds
the threshold, look-up table values for all the entries in
its cluster are adjusted. The modifications depend on the
weighted access count and the performance zone in which
the entry is located.

Larger weighted access count increments for entries
in Zone -3 or 3 cause the controller to exhibit less “pa-
tience.” This is important as states in these zones are
relatively distant from the stable state, where error and
error-change both equal zero. Since the system output
is typically in the rise time phase in Zone -3 or 3, the
system must be pushed to its stable state as rapidly as
possible. For this reason maximal changes are made to
look-up table entries in these zones.

When the system is close to the stable state, as in
Zone -1 or 1, frequent table modifications may cause unde-
sirable oscillations in system response. The weighted ac-

—~835—

cess count increments in these zones are therefore smalle
and the threshold is not reached as frequently. As the
system is usually in the response time phase in Zone -1
or 1, the look-up table values are updated with less vigor
even when the threshold is ultimately exceeded.

Whenever a look-up table entry is adjusted all the
elements in its cluster in the weighted access count ta-
ble are reset to zero. The weighted access count table
thus models short-term memory. On the other hand, the
cumulative weighted access count table models long-term
memory. It records the cumulative accesses for each look-
up table entry over a cycle starting at a sleep-awake and
ending at the next awake-sleep transition. The table helps
ensure that the autonomous controller learns rapidly dur-
ing its initial cycles, and that it develops patience and
learns more slowly in later cycles. This prevents the con-
troller from unlearning what it has already learned.

Consequently, at the start of a cycle, when the con-
troller transits to the awake state, the cumulative access
count table has zero values for all its entries. Then, when-
ever an entry in the weighted access count table is ze-
roed, t.e., when the corresponding look-up table value is
adjusted, its cumulative access count table value is incre-
mented by its weighted access count. Entries in the cu-
mulative access count table are incremented until the end
of the sleep-awake-sleep cycle, at which time the entire
cumulative access count table is reset to zero. Just before
this is done, the values are compared with and stored in
the maximum weighted access count table.

The maximum weighted access count table records
the maximum number of accesses for look-up table entries
over the “lifetime” of the autonomous controller. A cycle
is just a “day” in the “life” of the controller. Maximum
weighted access count table values are first set at the end
of the first cycle. From the second cycle on, a look-up ta-
ble entry is updated only when its value in the cumulative
access count table exceeds its value in the maximum ac-
cess count table. The autonomous controller thus grows
more patient with age. More table accesses are required
in a given cycle than in all previous cycles before a change
is made to the look-up table.

3. Hardware Implementation

The hardware implementation of the autonomous con-

trol algorithm is based on an Intel MCS-51 series micro-
controller board (see Figure 2). The board incorporates
an Intel 8031 processor, an inexpensive 8-bit microproces-
sor which is widely used in industry. The micro-controller
system offers 64k bytes each of program and data space.
However, only a very small portion of this memory is ac-
tually used in implementing the autonomous controller.
Control and feedback input/output is accomplished ei-
ther by using digital/analog converters or by using the
serial port offered by the micro-controller.

The original autonomous control algorithm was con-
siderably simplified before implementation in hardware.
The simplifications were introduced to achieve the desired
high sampling rates and low RAM requirements. All the
computations involved in the autonomous control algo-
rithm were modified to involve 8-bit integer arithmetic.
Additionally, assuming a symmetric performance evalu-
ation table eliminated the need to use signed integers.

Another convenient simplification involved the automatic
scaling of look-up table values to obtain reasonable ranges
with the available 8-bits. Finally, all routines were opti-
mized to minimize the amount of micro-controller code.

Figure 2. Block diagram.

Figure 3. Autonomous control system.

The entire autonomous control system is implemen-
ted on a printed circuit board measuring 3.25in.x3.75in
(see Figure 3). It is designed specifically for extensibil-
ity, including the option of adding analog input/output.
The hardware is also provided with battery-backed static
RAM so that the control knowledge it has gained remains
available if power is lost. The simplified algorithm allows
the 11.06 MHz micro-controller to operate at rates exceed-

—836—

ing 200 “global” look-up table reinforcements per second.
{Recall that the reinforcements propagate within clusters
in the look-up table.) High learning rates are important
when developing practical on-line adaptive controllers for
relatively fast systems. It also becomes feasible to have
the autonomous controller learn to control systems even
while it is controlling them. This is appealing because
incorrect rules might have initially been provided to a
fuzzy controller. It is sldo conceivable that in some cases
an initial control policy might not be available.

4. Concluding Remarks

The autoriomous controller described in this work
is endowed with system-independent control knowledge
and key constructs for implementing autonomous learn-
ing. These include short-term and long-term memories to
guide adaptation and to ensure that the controller does
not unlearn what it has already learned. The controller
is designed to remain dormant when system behavior is
satisfactory. It autonomously initiates adaptation in real
time when adverse performance is observed.

The hardware implementation incorporating the pop-
ular and inexpensive 8-bit Intel 8031 processor allows the
autonomous controller to operate at relatively high rates
exceeding 200 look-up table reinforcements per second.
The high learning rates enable the autonomous controller
to learn to control unknown systems even while it is con-
trolling them. The resulting autonomous control hard-
ware can effectively control fast systems ~ even when it
is initially provided with a vacuous rule base.

The autonomous control algorithm has been tested
on a variety of simulated and real systems. The simu-
lated systems include linear and certain non-linear sys-
tems including some with time delays. The simulations
demonstrate that the autonomous controller gives rise to
acceptable performance even when it is supplied with an
initial look-up table derived from vacuous rules.

In a typical experiment the autonomous controller
was used to maintain the temperature of an incandescent
lamp by adjusting the power delivered to it {3]. In the
space of two to three set-point changes the autonomous
controller was able to construct an adequate control sur-
face from an initially vacuous look-up table. Subsequent
set-point changes gave rise to minor adjustments in the
learned control policy and marginal improvements in pe-
formance.

Experiments also indicate that the autonomous con-
troller works best with stable systems. However, an au-
tonomous controller with a vacuous policy can be trained
to control an unstable system by first applying it to a sta-
ble system similar to the original system. The partially-
learned controller is then progressively applied to less sta-
ble systems which are similar to the original unstable sys-
tem before it is applied to the original unstable system.

Acknowledgement: This research is supported by NSF
Grants IRI-9110709 and IRI-9244550, OCAST Grant AR-
9-010, and by grants from the Oklahoma Center for In-
tegrated Design and Manufacturing and from Sun Mi-
crosystems, Inc. The authors also wish to acknowledge
the contributions of Chun-Hsin Chen and David Gardner
to this project.

~837 -

References

P. Bonissone, Fuzzy logic controllers: A knowledge-
based system perspective, Proceedings of the Third
International Workshop on Neural Networks and Fuz-
zyy Logic, NASA Johnson Space Center, Houston,
Texas, pp. 1-2, 1992.

M. Braae and D.A. Rutherford, Theoretical and lin-
guistic aspects of the fuzzy logic controller, Automat-
tca, vol. 15, pp. 553-557, 1979.

D. Gardner, C.H. Chen, K. Ashenayi and S. Shenoi,
Real-time operation of an autonomous fuzzy con-
troller, Proceedings of the Second IEEE International
Conference on Fuzzy Systems, San Francisco, Cali-
fornia, pp. 315-320, 1933.

S.Z. He, S.H. Tan, C.C. Hang and P.Z. Wang, Design
of an on-line rule-adaptive fuzzy control system, Pro-
ceedings of the First IEEE International Conference
on Fuzzy Systems, San Diego, California, pp. 83-90,
1992.

D. Mallampati and S. Shenoi, On-line adaptive fuzzy
logic controllers, Proceedings of the 1992 Interna-
tional Fuzzy Systems and Intelligent Control Confer-
ence, Louisville, Kentucky, pp. 68-80, 1992.

T.J. Procyk and E.H. Mamdani, A self-organizing
fuzzy logic controller, Automatica, vol. 15, pp. 15-
30, 1979.

D.A. Rutherford and J.C. Bloore, The implementa-
tion of fuzzy algorithms for control, Proceedings of
the IEEE, vol. 64, pp. 572-573, 1976.

S. Shenoi, C.H. Chen and A. Ramer, Towards au-
tonomous fuzzy control, Proceedings of the Third In-
ternational Workshop on Neural Networks and Fuzzy
Logic, NASA Johnson Space Center, Houston, Texas,
pp. 282-284, 1992,

M. Sugeno, An introductory survey of fuzzy control,
Information Sciences, vol. 36, pp. 59-83, 1985.

