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Abstract

Existing fuzzy control methods do not perform well when
applied to systems containing nonlinearities arising from un-
known deadzones. We propose a novel two-layered fuzzy logic
controller for controlling systems with deadzones. The two-
layered cortrol structure comsists of a fuzzy logic-based pre-
compensator followed by a conventional fuzzy logic controller.
Our proposed controller exhibits superior transient and steady-
state performance compared to conventional fuzzy controllers.
We illustrate the effectiveness of our scheme using computer
simulation examples.

I Introduction

Many physical components in control systems contain nons-
mooth nonlinearities, such as saturation, relays, hysteresis, and
deadzones. Such nonlinearities are especially common in actu-
ators used in practice, such as hydraulic servovalves. Further-
more, the nonlinearities in such systems are often unknown and
vary with time. In this paper, we consider only deadzone non-
linearities.

Several classical methods exist for controlling systems with
nonsmooth nonlinearities, including sliding mode control [1],
and dithering [2]. Motivated by limitations in these methods,
such as chattering in sliding mode control, Recker et al. [3] and
Tao et al.[4] proposed an adaptive control scheme for controlling
systems with deadzones. In practice, however, the transient
performance of the adaptive control schemes above is limited.

Fuzzy logic-based controllers have received considerable in-
terest in recent years (see for example [5], (6], [7]). Direct
application of conventional fuzzy controllers to a system with
deadzones resuits in poor transient and steady-state behavior,
in particular, a steady-state error occurs when using a conven-
tional fuzzy controller to a system with deadzones. To eliminate
the steady-state error, we may attempt to use a fuzzy controller
that also incorporates the “integral” of the output error as an
input to the controller.

In this paper we propose a fuzzy logic-based scheme which
does not suffer from the deficiencies mentioned above of con-
ventional fuzzy controllers applied to systems with deadzones.
The idea underlying our approach is based on analyzing the
source of the steady-state error resulting in using a conventional
fuzzy controller. Our control scheme consists of two “layers”: a
fuzzy precompensator, and a conventional fuzzy controller. We
demonstrate that our controller has good transient as well as
steady-state performance, and is robust to variations in dead-
zone nonlinearities.

IT Characteristics of Conventional FLC

In this section we describe a conventional fuzzy logic controller
(FLC), and study the behavior of the FLC applied to a system
with a deadzone.

Fuzzy Controtler

?—- Fle(k).Ae(i)

Figure 1: Conventional FLC system with deadzone
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Figure 2: Characteristics of Actuator with deadzone

II.1 Basic Control Structure

We consider the (discrete-time) system shown in Figure 1, which
is a conventional FLC control system [7]. The transfer function
P(z) represents the plant, D represents an actuator with dead-
zone, Fle(k), Ae(k)] represents a FLC control law, K is the
feedforward gain, v(k) is the output of the controller, u(k) is
the output of the actuator, y,,(k) is the reference input (com-
mand signal to be followed), and y,(k) is the output of the
plant. The characteristics of the actuator with deadzone D is
described by the function

m{v~d), ifv>d
Dv]=<¢ 0 if -d<v<d

m(v+d), ifv<—d

where d,m > 0. Figure 2 illustrates the characteristics of the
actuator with deadzone. The parameter 2d specifies the width
of the deadzone, while m represents the slope of the response
outside the deadzone.

II.2  Fuzzy Logic Controller

We describe the FLC control law Fle(k), Ae(k)] as follows.
We think of e(k) and Ae(k) as inputs to the controller, and
Fle(k), Ae(k)] as the output. As we shall see later, e(k) is the
output error y, (k) — y,(k), and Ae(k) is the change in output
error e(k) — e(k — 1). Associated with the fuzzy control law is
a collection of linguistic values
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L={NB,NM,NS,Z0O,PS,PM, PB}
Figure 3 shows a plot of the membership functions of linguistic
values. The “meaning” of each linguistic value should be clear
from its mnemonic.
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Figure 3: Membership Functions

e(k)
NBETNM [ NKSTZ20 [PS[PM | PB
NB NB T NS
NM NM NS
NS NS 170 PM

Ae(k) [ZO[NB|NM | NS [ZO [PS[PM | PB
PS ITRM T NS TZ0 [ PS
PM PM
PB PM T PB

Table 1: Fuzzy logic rules for conventional FLC

The fuzzy control law consists of three stages: fuzzification,
decision making fuzzy logic, and defuzzification. We used a
single-tone fuzzification method and the center of area method
as defuzzification method. For this conventional FLC, the rules
are given in Table 1. This set of rules is fairly standard and
well known. Using the mamdani’s resoning method (5], we can
compute the output Fle(k), Ae(k)].

II.3 Analysis of Steady-State System Behavior

We now study the steady-state behavior of the system con-
trolled by the conventional FLC described in the previous sec-
tion. We will show that in the presense of a deadzone, a steady-
state error occurs.

The dynamics of overall system is described by the following
equations:

e(k) = ym(k)—yp(k)

Ae(k) = e(k)—e(k-1)
v(k) = Kiym(k)+ Fle(k), Ae(k))
u(k) = Dv(k)]

w(k) = P(z)[u(k)]

Note that the equation y,(k) = P(z)[u(k)] involves a slight
abuse of notation; however, its meaning should be obvious. It
turns out that F|[0,0] = 0, and therefore if we fix the reference
input ¥, (k) = ym, the steady-state actuator input is Ky,.
Consider the case where there is no deadzone, i.e., d = 0,
and m = 1. In this case the plant output can be written as

yp(k) = P(2)[K1ym (k) + Fle(k), Ae(k)]]
Since e(k) = ym(k) — yp(k), then the plant output can also be
written as
Yp(k) = ym(k) ~ e(k)

We now fix ¢m (k) = ym, and study the behavior of the system
in steady-state. In this case, we can set Ae(k) =0 to get

Yp(k) = K[K1ym + Fle(k), 0]] = ym — (k) (1
where A, is the steady-state gain of P(z) (assumed stable),

given by K, = lim, (1 — 27})P(z). The steady-state error e,,
is then the solution to equation (1), that is,

I"s[l{lym + F[essvo]] = Ym — €ss (2)

K4 Fl[e,0), -¢
3

-e K;Fle,0]

Figure 4: Graph of K,Fe,0] and —e

We assume that the controller is “well-tuned”, so that K; =
K. Equation (2) then becomes

K, Fless,0] = —egys (3)

We do not have a closed form expression for the function FY[-,0].
Nevertheless, it is easy to see from the description of the FLC in
the previous section that F[-,0] is an increasing odd function,
as illustrated in Figure 4. The graph of K,F[-,0] in Figure 4
was obtained by direct calculation via computer. We can solve
equation (3) graphically—we simply plot the left and right hand
sides of equation (1) on the same graph, and find the point
where they intersect. As can be seen in Figure 4, the solution is
ess = 0. Therefore, the steady-state error for a system without
a deadzone is exactly zero.

We now consider the case where a deadzone is present, i.e.,
d # 0, and m > 0 is arbitrary. In this case, the steady-state
output of the plant can be written as

yp(k) = I\’aD[Klym + F[e(k)v 0]] = Um — e(k)
Therefore, the steady-state error is the solution to the equation
K D[K1ym + Fle(k),0]] — ym = —e4 (4)

The first term in the left hand side of (4) is illustrated in Fig-
ure 5(a). Once again we use a graphical approach to solve (4);
see Figure 5(b). As we can see, the solution e,, is no longer
zero, but some nonzero number (with the same sign as yn,,; in
Figure 5(b) we have assumed a positive y,,). It is clear that the
nonzero steady-state error is a direct result of the presence of
the deadzone in the actuator. In the next section we illustrate
this behavior via an example.

K|y, +Fle,0]
o
K D[K,yy +Fle.0])
3
-d
(2)
- KsDIK, yr, +Fle,01)-3,
Css K
° ' e
n
(b)

Figure 5: Graphs of: (a) K D[K1ym+ Fle, 0]}; (b) K,D[K1ym +
Fle,0]] — ym and —e
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I1.4 An Example
Consider a (continuous time) plantwith transfer function

10
s2+s+1

We apply the conventional FLC described before to the above
plant, using the standard sample-and-hold approach, with a
sampling time of 0.025 seconds. In this example, we set yn, = 1.
Figure 6 shows output responses of the plant for three values
of d: 0.0, 0.5, 1.0. In all cases we used m = 1. It is clear from
Figure 6 that there is a relatively large steady-state error and
overshoot when a deadzone is present. The steady-state error
and overshoot increases with the the deadzone width.
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Figure 6: Output responses of plant with conventional FLC

III Two-Layered Fuzzy Logic Controller

In this section we describe a novel two-layered fuzzy logic con-
troller. Our aim is to eliminate the steady-state error and im-
prove the performance of the output response for FLC systems
with deadzones. As we shall see, our proposed scheme is in-
deed insensitive to deadzones, and exhibits good transient and
steady-state behavior.

TII.1 Basic Control Structure

We use a graphical approach to describe the idea underlying
our proposed controller. Consider Figure 5(b), which illustrates
the source of the steady-state error for the conventional FLC
system. Suppose we shift the graph of K, D[K1ym + Fle, 0]) = ym
to the left by an amount equal to 7 (the intersection point of the
graph with the e-axis). Then, it is clear that the steady-state
error (the point of intersection of the two graphs in Figure 5(b))
becomes zero. Shifting the graph of K, D[R yym + Fle, 0)] —ym to
the left by an amount 7 is equivalent to adding 7 to e. In other
words, the graph of K, D[K1ym + Fle+ 7, 0]] — ym intersects the
graph of —e at the origin. The key idea underlying our proposed
controller is to shift the curve of K, D[K1ym + Fle +1,0]] — ym
as described above so that the steady-state error is zero. Note
that instead of adding 7 to e to shift the curve, we can achieve a
similar effect by adding some other constant u to the reference
input ¥m. In our controller we use fuzzy logic rules to calculate
the appropriate value of u to be added to the reference input.

We now proceed to describe our proposed controller. First,
we define the variables y., (k) and €'(k) as follows:

¥m(k) = ym(k)+ p(k)
(k) = elk)+ u(k)

where u(k) is a compensating term which is generated using a
fuzzy logic scheme, which we will describe below. The proposed
control scheme is shown in Figure 7. As we can see, the con-
troller consists of two “layers”: a fuzzy precompensator, and
a conventional FLC. Hence we refer to our scheme as a two-
layered fuzzy logic controller. The error e(k), change of error
Ae(k), and p(k — 1) (previous compensating term) are inputs
to the precompensator. The output of the precompensator is

w(k). The dynamics of overall system is then described by the
following equations:

e(k) = ym(k)—yp(k)

Ae(k) = e(k)—e(k~1)
u(k) = Gle(k), Ae(k), u(k ~ 1)]
U(k) = ymlk) + n(k)
ek) = ym(k)—yp(k)
Ae'(k) = é€'(k)—e€'(k-1)
v(k) = Kyy,(k)+ Fle'(k), A'(k)]
u(k) = Dfv(k)]
w(k) = P()ulk)

In the next two sections we describe in detail the two layers of
our proposed controller structure.

Puzzy
Precompensator
Ymi| + N Yo
— G e
#

Figure 7: Proposed Two-Layered Fuzzy Logic Controller

111.2 First Layer: Fuzzy Precompensator

We now describe the first layer in our two-layered controller
structure, which consists of the fuzzy logic-based precompen-
sator. As before, our fuzzy precompensator makes use of a set
of linguistic values. the precompensator uses a new set of lin-
guistic values L' = NE,ZE,PO. The mnemonic NE stands
for “negative”, ZE stands for “zero”, and PO stands for “posi-
tive”. Figure 8 shows a plot of the membership functions. The
linguistic values in L' are used for the “input” variables of the
precompensator, while the linguistic values in L are used for
the “output”.

As before, the fuzzy precompensator consists of three steps:
fuzzification, decision making fuzzy logic, and defuzzification.
The fuzzification and defuzzification method and resoning method
are same as section II.

Associated with the decision making fuzzy logic stage of the
precompensator are twenty-seven rules {R},..., Ry}, as shown
in Table 2.
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Figure 8: Membership Functions

III.3 Second Layer: Conventional FLC

The second layer of our controller structure consists of a con-
ventional FLC, which is essentially identical to that described
in Section IL.2. The only difference in this case is that instead
of using e(k) and Ae(k) as inputs to the FLC, we use e'(k) and
Ae'(k), where e'(k) = e(k) + p(k), Ae'(k) = €'(k) ~ ek - 1),
and p(k) = Gle(k), Ae(k), u(k—1)] is the output of the precom-
pensator. In particular, as indicated by the dynamics equations
previously, the output of the FLC is given by

(k) = K1y}, (k) + Fle'(k), Ae'(k)]
where yl, (k) = ym(k) + p(k).
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IF THEN

(k) | Be(k) [k =1) | 4lk)
NE NS

NE ZE zZ0

PO z0
NE PS

NE ZE ZE z0
PO NS

NE PM

PO ZE PS

PO zZ0O

NE zZ0

NE ZE NS

PO NS

NE Z0

ZE ZE ZE z0
PO ZE
NE PS
PO ZE PS

PO 70

NE PM
NE ZE PS

PO Z0O

NE PM
PO ZE ZE PS
PO Z0
NE PB
PO ZE PS

PO Z0

Table 2: Rules for the Fuzzy Precompensator

IIT.4 Example

We consider again the plant of Section I1.4. We now apply
the proposed two-layered fuzzy logic controller to the plant; as
before we use a sampling time of 0.025 seconds and y,, = 1.

Figure 9(a) shows output responses of the plant for m = 1
and three values of d (as before): 0.0, 0.5, 1.0. The output
responses in Figure 9(a) show considerable improvement over
those of Figure 6. Not only is the steady-state error reduced to
virtually zero, but the transient response is also improved. In
Figure 9(a), the “internal variables” (e.g., scale factors, mem-
bership functions) used were “tuned” for a deadzone width of
d = 0 and a slope of m = 1. Nevertheless, as we can see, the
controller also performs well for deadzone widths of d = 0.5
and 1.0. Therefore, we conclude that our controller is robust
to variations in the deadzone width.

Figure 9(b) shows output responses of the plant for d =
0.5 and three values of m: 2.0, 3.0, 6.0. As we can see, the
controller performs well in all three cases. Hence we conclude
that the controller is also robust to variations in slope.

IV Conclusions

In this paper, we proposed a two-layered fuzzy logic controller
for systems with de=adzones. Qur controller consists of a fuzzy
precompensator and a conventional FLC. The proposed con-
troller has superior steady-state and transient performance,
compared to a conventional FLC. An advantage of our present
approach is that an existing conventional FLC can be easily
modified into our control structure by adding a fuzzy prec-
ompensator, In addition, the two-layered control structure is
robust to variations in the deadzone nonlinearities (width and
slope).

d=00
d~05
a-10
2 3 4 s 6 7 B 9 10
Time (Seconds)
(2)
12
04
m=20
02 cremerreeeee W30
. m=60
0 1 2 3 4 s 6 7 8 9 10
Time (Seconds)

Figure 9: Output responses of plant with proposed FLC

References

[1] V.1 Utkin, Sliding Modes and Their Application in Vari-
able Structure Systems. Moscow:Mir, 1978.

[2] C. A. Desoer and S. M. Shahruz, “Stability of dithered
nonlinear systems with backlash or hysteresis,” Int. J.
Control, vol. 43, no. 4, pp. 1045-1060, 1986.

[3] D. A. Recker, P. V. Kokotovic, D. Rhode and J. Winkel-
man, “Adaptive nonlinear control of systems containing
a dead-zone,” in Proc. of the IEEE Conf. on Dec. and
Contr., pp. 2111-2115, Brighton, U.K., Dec. 1991.

[4] G. Tao and P. V. Kokotovic,“Adaptive control of Plants
with unknown dead-zones,” Report No. CCEC-91-1006,
Univ. of Cal., Santa Barbara, U.S.A., Sept. 1991.

[5] E. H. Mamdani and B. R. Gaines, “Fuzzy reasoning and
its Applications” London:Academic. 1981.

[6] Y. F. Li and C. C. Lau, “Development of fuzzy algorithms
for servo systems,” IEEE Contr. Syst. Magazine, vol. 9,
pp. 65-72, 1989.

[7] D. P. Kwok, P. Tam, C. K. Li and P. Wang, “Linguistic
PID controllers,” in Proc. of IFAC 11th Triennial World
Congress, Tallinn, USSR, vol. 4, pp. 205-210, Aug. 1990.

—829—



