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Abstract

A method of automatic learning of fuzzy if-then rules
with certainty factors from the given input-output data
is developed. A certainty factor expresses the degree to
which a fuzzy if-then rule is fitting to the given data. Fuzzy
if-then rules with certainty factors are generated without
optimization techniques. The obtained fuzzy if-then rules
can be regarded as an approximator of a non-linear func-
tion. This method is applied to GMDH ( Group Method of
Data Handling ) to cope with difficulty in approximating
multi-input functions with fuzzy if-then rules.

1 Introduction

In the first stage of fuzzy logic control research, fuzzy if-
then rules were given by experts (see E.H.Mamdani[l]). As
more complicated processes have been dealt with than be-
fore, we have realized that if-then rules from experts have
not been erough for expressing them. Thus, the problem
for generating fuzzy if-then rules from the given input-
output data has arisen to have more eflicient fuzzy if-then
rules than those of experts.

A fuzzy if-then rule proposed by M.Sugeno and
G.T.Kang [2] is written as

ifx,1s Ayand ... and z, is A,

theny=ao+a1z1+ -+ aGmTm, (1)

where A; is a fuzzy set. Given the input-output data
(®r,yx), k = 1,---,7, the problem for finding parameters
in (1) can be described as follows

i) determine fuzzy sets of if-parts in (1)
i1) determine input-output functions of then-parts in (1)

i) and ii) are closely related to each other. Thus, opti-
mization techniques are employed in the iterative way [2].
A descent method {3} and neural networks [4] are used to
obtain many parameters in fuzzy if-then rules.

In this paper, we propose a method of generating fuzzy
if-then rules with certainty factors from the given input-
output data. This method is similar to one in pattern
classification proposed by H.Ishibuchi et al. [5]. Further-
more, the method proposed by M.Delgado et al.[6] uses
certainty factors derived from the given data to generate
fuzzy if-then rules.

The purpose of this paper is to obtain an approximator
of a non-linear function by fuzzy if-then rules with cer-
tainty factors which are derived from the given data. In

our approach, we can obtain appropriate fuzzy rules fitting
to the given data without any optimization techniques.

In the case of multi-dimensional input space, an explo-
sion of the number of fuzzy rules will occur, since fuzzy
rules should cover the whole space. In order to cope with
this difficulty in such a case, we propose to use the mul-
tilayer structure of GMDH(7],[8] with fuzzy rules. In our
approach, the partial description in GMDH is modeled by
fuzzy rules which can be more flexible than the second-
order regression model in the conventional GMDH.

To demonstrate that our approach without any opti-
mization techniques is effective for obtaining a non-linear
function by fuzzy rules, computer simulations are shown
in this paper.

2 Basic method for generating
fuzzy rules

Let us consider the case of a single input variable in
order to simplify the explanation of our method. Given
the input-output data (z4,ys), k= 1,---,r , our problem
is to obtain fuzzy if-then rules with certainty factors to
which the given data are fitting, and also to estimate the
output yo when the input zo is given. Fuzzy if-then rules
used here have certainty factors as follows

I1f xis Ay, then ys B; with ¢;; (2)

where A; and B; are fuzzy sets on X and Y, respectively
and c;; is a certainty factor derived from the given data.
For simplicity, (2) is rewritten as

Ai — BJ' (C,‘]'). (3)

In our method, all the combinations of {uzzy sets in the
if-part and those in the then-part are considered as

A;—‘)B](Cij)vi:1""$Sy.j:17"'sm (4)

where {A1, -+ ,A,} and {By, -, B,} are fuzzy parti-
tions on X and Y, respectively. The following approach is
employed to determine ¢;; and to estimate the output yg
corresponding to a new input zo.

i) The frequency of the fuzzy rule A; — B, is obtained
as

N = Z ta (k) - ps,(yk) (5)
k=1

where ji4,(-) and up,(-) are membership functions of
A; and B, respectively. (5) can be regarded as the
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An example of fuzzy partition in the input space
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Fig. 2 The inference result (s=9, m=9)

sum of compatibilities of the given data (zx,y:) to
the fuzzy rule A; — B,.
ii) The certainty factor ¢;; of A; — B; is defined as

N
Cij = (6)
TNy

with which the fuzzy rule A; — B; is obtained.

ii1) Given the input zo, the estimated output yo is ob-
tained by the following interpolation

Yo = Z}":l Tiz1 #A.(Io)c.‘jyj
o= m
2]=1 Yoie1 #a,(To)eis

(7)

where y; is the center of the fuzzy set B;.

To reflect a vague phenomenon under consideration, the
interval output Y5 can be estimated as follows. Let [B,],
denote the h-level set of B; defined as

(Bl = [y;,43]- (8)
Then, the interval output Yo = [y}, y¢] can be obtained by
LTy i 4, (To)ciyl

d
Yo = ==
O T Y na(zo)c;

d=1u (9)

In this approach, fuzzy rules with certainty factors are
generated without any optimization techniques. Thus, this
approach does not consume long computing time to obtain
fuzzy rules. Furthermore, the obtained fuzzy rules approx-
imate the input-output relation given by data, whatever
the given data are. It can be said that our approach can
obtain a non-linear function modeled by fuzzy rules from
the given data.

2 50 100
input

Fig. 3 The inference result (s=14, m=14)

Fig. 4 The obtained certainty factors in the case of Fig.2

[Numerical Example 1]
Let the input and output spaces be the interval [0, 100].

It is assumed that the fuzzy partition in each space is given
as

maz{l — |r — q;|/6,0},i =1,---,s

#a,(z)
(10)

#8,(y) maz{l — |z — &|/¥,0},j =1,---,m
where a and b are the center and the spread of each fuzzy
set which are defined as

a; = =L x 100, afzjm—"_l—lxl()o

b= 1661 blz_wg (11)

s—1 ! m-1

Fig.1 shows an example of fuzzy partition in the input
space. IFig.2 and Fig.3 show the inference results according
to different data structures, where circles denote the given
data and the solid line is the inference result. Fig.4 shows
the obtained certainty factors in the case of Fig.2. It can
be seen from Fig.2 and Fig.3 that non-linear functions can
be obtained from the given data by our method.
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Fig. 5 The multilayer model by fuzzy rules ( FR: fuzzy
rules )

3 Multilayer Models by Fuzzy
Rules

As the number of input variables increases, the num-
ber of fuzzy rules drastically increases. For example, if the
number of input variables is n, we have s™ x m fuzzy rules,
where s and m are the numbers of fuzzy sets in each input
and output spaces, respectively. To cope with this diffi-
culty, we will use GMDH’s structure, where the estimated
non-linear model is obtained by combining second-order
functions of two input variables with a multilayer proce-
dure.

In the conventional GMDH, the partial description is the
following polynomial model of two variables;

2 .2
Yk = Qo + Qi + an; + as + aqe2; + aseriz; (12)

In our approach, the non-liner function described by
fuzzy rules can take the place of the second-order regres-
sion model (12}, since the former might be more flexible
than the latter. Thus, let us describe the fuzzy rules with
two input variables as follows.

if Ty 1s Ay and 25 15 Age ,then y is B with cix;  (13)

Here, let us define the membership function of A;; x Ay
as

Baglz) = /"Al.(xl) : /‘Azk(zz) (14)

where Aix = Ay X Ay and & = (2, 72)". Then, we have

if T 1s A, then yis B; with cy; (15)

which is just the same as the fuzzy rule in the section 2,
except for the number of fuzzy rules (s? x m).

The multilayer model by fuzzy rules is shown in Fig.5,
where FR denotes fuzzy rules, I is the data partition into
the training data set (TD) and the checking data set (CD),
II is the selection of intermediate variables and 1II is a
stopping condition with the checking data. The algorithm
of the multilayer model with fuzzy rules can be described
as follows:

Step 1: Compute all the correlation coefficients be-
tween the input and oulput variables, and select the
best N input variables according to the values of

the correlation coefficient. These selected variables
(x1,---,zn) are denoted as the input variables to the
first layer.

Step 2: Separate the given data into TD and CD.

Step 3: Form the partial description constructed by
fuzzy rules with two inputs z, and x4, and calculate
the following square error:

=3 (-9 (16)

i€CD

where y; is a given output and y? is an estimated out-
put by fuzzy rules (FR). According to the index values
of E:,q, select the best L intermediate variables. These
selected variables y;, ¢ = 1,---, L become the inputs
to the next layer. Calculate the threshold in this layer:

Qx = min{E} } (17)

Step 4: Repeat Step 3 until the threshold Q44 in the
(k+1)-th layer becomes larger than @ in the k-th
layer, i.e. Qrs1 2 Qi which is the stopping condition.

By repeatedly substituting the intermediate variables
into the partial descriptions in the next layer until the
stopping condition is satisfied, the multilayer model is ob-
tained.

[Numerical Example 2]

A simulation result of time series prediction is shown
in Fig.6 where open and closed circles denote TD and CD,
respectively. The inference result is plotted by the solid
line. The experiment conditions are summarized as follows;

i) Each axis of the input and the output spaces is di-
vided into 16 fuzzy sets, respectively.

ii) Eight input variables, i.e. zi_g,z%_7,-"-,%k_1, are
selected, while 1 is an output. The prediction of z;
is determined by eight input variables.

iii} The numbers of TD and CD are 100, respectively.

iv) Intermediate variables of L = 8,10,12,14,16 are se-
lected among all the combinations of z; and z; (sC> =
28).

In the case of L = 16, after repeating Step 3, the stop-
ping condition was satisfied at the fourth layer. Then, we
obtained the three layers model. Using this model with
fuzzy rules, time series prediction denoted as the solid line
in Fig.6 was obtained by (7). It can be seen from Fig.6
that our approach is effective in the sense of data fitting.

We compared the proposed method with the conven-
tional GMDH. Table 1 and Table 2 show the mean
squared errors of the proposed method and the conven-
tional GMDH, respectively. In the case of the error at CD
and TD, the proposed method shows better result than the
conventional GMDH. The proposed method shows worse
result at CD than TD, because it tends to be overfitting
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Fig. 6 The simulation result of time series prediction by GMDH with fuzzy rules

to TD. Table 3 shows the comparison between the pro-
posed method and the conventional GMDH. This table
shows that the proposed method needs fewer layers than
the conventional GMDH. This is due to high flexibility of
fuzzy rules used as partial discriptions.

4 Concluding Remarks

We proposed the new approach to the reviced GMDH
with fuzzy rules. The characteristic of our approach is as
follows.

i) Using the multilayer structure, we can control the ex-
plosion of the number of fuzzy rules.

it) By the fuzzy rules with certain factors, it is easy to
approximate the non-liner functions. It doesn’t take
long computing time to generate the fuzzy rules be-
cause of no need of optimization techniques.

ili) From the point of view of GMDH, the partial discrip-
tions are extended to non-liner functions with higher
flexibility in the proposed method. Because of high
flexibility of fuzzy if-then rules used as partial dis-
criptions, the proposed algorithm terminates at fewer
layers than the conventional GMDH.
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