Fifth IFSA World Corgress (1993), 761-764

RULE-BASE SIZE-REDUCTION TECHNIQUES

IN A LEARNING FUZZY CONTROLLER

E. Lembessis*

R. Tanscheit’

*AMBER S.A. Computer Systems, The "Heracles Group”, POB 3500, Athens - Greece
®Department of Electrical Engineering, PUC-Rio, CP 38.063, 22.452 Rio de Janeiro, RJ - Brazil

Abstract

In this paper we consider techniques for reducing the
generated number of rules in learning fuzzy controllers of the
state-space action-reinforcement type that can be simply
implemented and that behave well in the presence of process
noise. Fewer rules lead to better performance, less
contradiction in controller action estimation, smaller required
execution-time and make it easier for a human to comprehend

the generated rules and possibly intervene.

1. INTRODUCTION

The techniques for reduction of the number of rules
generated in learning fuzzy controllers were developed
through experiments with a Fuzzy Rule-based Self-Organising
Controller (SOC) [1,2,3,4], which will be described briefly in
the next section. The idezs behind those techniques may also
be applied to other controllers that utilise a state-space,
reinforcement-type, self-organisation technique. Experimental
investigations have shown that fewer rules lead to less
contradiction in controller action estimation and to a better.
overall performance, as well as to an improved execution-
time. Besides, a human can comprehend the generated rules
more easily when the control strategy is defined by a small

number of rules.

2. STRUCTURE OF SOC

The Fuzzy Self-Organising Controller (SOC) is a
two-level, hierarchical, rule-based type of controller where the
control strategy (i.e. rule-base) is created by the controller
itself by applying the self-organising algorithm to the process

while executing the control task. SOC can be considered as

consisting of an ordinary fuzzy controller at the lower level
and of a learning mechanism at the top level.

At each sampling instant, the process output is compared
to the setpoint and the ’error’ signal is produced; the
‘change-in-error’ is given by the difference between the
present error and the error at the previous sampling instant.
Each of these signals is then quantised to one of 13 discrete
levels (any number in general) by using scaling factors GE
and GCE and is then fed into the SOC system. The lower
level fuzzy controller produces a change in controller output
(u) by using the rules stored in the rule-base, in a coded form,
and the current inputs error (e) and change-in-error (ce). That
fuzzy output is then defuzzified by using either the Mean of
Maxima (MOM) or the Centre of Gravity (COG) method (5]
and the resulting incremental signal is fed, via a summation
accumulator, as input to the process being controlled.

At the top level, the learning mechanism is responsible
for creating new rules or modifying existing ones. When the
process output is not the desired one (as judged by a
Performance Index), it is assumed that some action taken by
the controller in the past was responsible for that and should
therefore be modified. By wusing a pre-specified
delay-in-reward (d) parameter, that past action is retrieved,
and modified according to the appropriate entry in a
Performance Index Table (P#0). This table is derived from a
general set of linguistic rules that express the desired system
trajectories in the system’s state-space (e x ce). In order to
exemplify the learning mechanism, consider an instant i,
when the controller inputs are e; and ce; and the output is u,
Assuming that an action u,, taken d instants before, is
responsible for the current response, the past state at that

instant would be given by e;, ce;, and u;, By using the

~761 -



appropriate entry in the performance table, a rule represented
in a coded form by (e, ,, ce., U, 4 + Ple,ce)) is added to the
rule-base. If there exists a rule with the same antecedents (e
and ce), the old rule is deleted [6). When P = 0, the
performance is deemed satisfactory and no rule modification
takes place. On repeating the control task, rules are added or
modified “with successive improvement of the controller
response. Eventually, a satisfactory set of rules is established.
In general, learning convergence can be achieved, but this is
not a requirement for good control performance.

The system state-space (e x ce) can be represented by a
2D matrix. In a similar manner, the indices of a 2D matrix
can represent which fuzzy sets are associated with the
linguistic values of the antecedent variables in a rule. If 13
discrete levels (i.e. 13-point universes) are used for the input
variables e and ce, that matrix will have 13 x 13 entries. Each
entry corresponds to a particular action u and represents, in
the same fashion as for the input variables, the position in
the controller output universe where the membership value is
1. Thus there are as many rules stored as there are non-zero
entries in this matrix. The shapes of the fuzzy sets used are
stored separately or standard forms are implied. These shapes
are used as fuzzification kernels during rule retrieval and
processing. The spread of these shapes (kernels) define the
kernel size, i.e., the number of elements in a quantised
universe of discourse for which the corresponding
membership function value is non-zero.

Now imagine sumperimposing the 2D representations of
the system state-space and the rule storage matrix. Because of
the spread of the antecedent fuzzy sets, a "region of
influence” for each rule is formed in state-space centering
around each rule entry in the 2D storage matrix (that
represents membership values of 1). Thus, each point in state-
space can be seen to have a "distance" value in relation to
each rule-centre. This distance, measured in terms of quanta,
dictates whether a rule has effect, and to what extent, when

the system is at a particular state (e;, ce;).

3. RULE-BASE SIZE-REDUCTION

The identity of a particular controller lies in the rules
created and stored, which constitute the amount of
information needed to control a particular process. There
should exist a minimum amount of information sufficient to
achieve tais. In a controller that is able to perform different

tasks, rules should exist that cover the whole state-space, and,

in addition, the state-space should be covered sparsely if a
minimum number of rules is to exist. In the other extreme, if
rules existed for every point in state-space, then the controller
would depart from the fuzzy set description and become a
look-up table, an undesirable situation since such a controller
could be implemented simply and without the present
fuzzy-theory-based structure. The methods considered for

reducing the generated number of rules were:

3.1. Static clean-up
The rules that affect the controller output are those either

on or near the state-space trajectory. Rules that are far away
from the final trajectory are redundant and could be deleted
with no effect on the controller performance. "Near” and "far"
from the trajectory are defined in relation to the spread of the
fuzzy sets defining the rule antecedents [6,7]. In addition, if
the MOM defuzzification method is used, two more
possibilities exist for reducing the number of rules by static
clean-up:

(a) any rules within "effective” distance from the trajectory
that have neighbouring rules even nearer to the
trajectory can also be deleted, since with MOM only
the immediate neighbourig rules contribute to the
decision;

(b) two rules equidistant and on either side of the trajectory
can be substituted by a single rule on the trajectory with
action (u' + v?/2, where u' and u? are the individual
rule actions.

Static clean-up can be initiated when learning convergence

has taken place or when the controller output converges to a

repeatable response. An alternative could be to keep track of

unused rules and delete these periodically. An example where
static clean-up was done is shown in Fig.1, where existing
rules and the resulting trajectory in state-space can be seen.

Since a constant number of rules was achieved between runs

4 and 5, static clean-up was initiated at run 5. It can be seen

that the remaining rules gave identical convergent responses.
One complication that might arise is that noise might

make the process visit a state for which there was a rule but
that has been deleted as redundant. In such a case learning

will be resumed and a new rule created where required.

3.2. Dynamic Deletion
The SOC algorithm can generate rules and alter the

actions of existing ones but it cannot delete existing rules that

—762—



ERR
S-NWANNNDOE—NW

®~NWANONNDOO =AW

T v

(a)

13
M 12 °
X :é
:00 9
x 8
° 60 ° ¥ ® °
¢ Ioo o w7 e o
I—roonoo 6
L) S
06 00 ¢ 4
3
2
1
T T OTT 0
8 18 12 @ 2 4 6 8 18 12
CERR RUN 6 CERR RUN7
(®) (©

Fig. 1. Example of static clean-up

(a) All rules present

(b) Rules within distance 2 from trajectory only present
(c) Effective rules due to MOM procedure only present

might be the cause of bad performance. Rules can be deleted
while leamning takes place based on system performance,
which might be established either on a per sample basis or
globally, over N samples. In either case, rules contributing to
the decision on that part of the trajectory that does not
conform with the required good performance should be
located for scrutiny. Unfortunately, the decision about which
of these rules should be deleted is not an easy one. Given that
the generation of rules is dictated by the structure of the
Performance Index Table, the simplest way of avoiding the
generation of "bad" rules is through the adjustment of the
Performance Table entries.

An alternative scheme is based on the assumption that
a new rule generated, by being more recent, would give better
performance than an existing rule within "effective” distance
and of the same consequent. Since the location of the existing
rule is covered by the new rule, the existing rule becomes

redundant and should be deleted.

3.3. Dynamic Change of Kernel Size

The basic mechanism behind this scheme is to increase
the region of influence of a rule in state-space, when a large
generation of rules is sensed, so that fewer rules would be
needed to cover the same space. Large rule number
generation might be defined according to the complexity of
the process controlled and a predefined number of samples
over which generation takes place. Both parameters are
difficult to set in practice. In addition, since the SOC
algorithm only generates rules depending on the demands of
the Performance Table, it would require a lot of complexity
added so that a rule is not created when the position of the
new rule is covered by an existing one. For this reason, the
technique did not seem fruitful for reducing the generated

number of rules.

On the other hand, this scheme could be used as an
independent facility during learning for the purpose of
improving control performance: initially, when few rules
exist, we maintain a large kernel size and hence a larger area
in state-space is covered by the few rules. As more rules are
generated, we decrease the kernel size in steps, thus
decreasing the area of influence of a rule and making their

application more accurate.

3.4. Stopping rule generation (SRG)

This technique involves reducing the number of rules by
means of defining positions on the state-space where rules are
allowed to exist and others where they are not allowed. Thus,
irrespectively of the demands of the Performance Table, the
new rules generated will be used to substitute existing rules
or inserted directly in the rule-base orly if they occupy
allowed positions in state-space. If they do not,‘then the new
rules generated are ignored. The simplest method of defining
allowed rule positions is by means of a grid pattem
superimposed on the state-space.

The simplest grid pattern is one where alternate
positions in state-space are occupied by rules, as shown in
Fig. 2a. This pattern can be applied over the error or
change-in-error universe only, or over both universes. For 13
points universes, the total number of rules will be reduced
from 13 x 13 = 169 without the grid to 13 x 7 = 91 in the
first case, and to 7 x 7 = 49 in the second. When tried in
practice, this scheme proved very effective in reducing the
number of rules and hence the execution-time. A problem that
may be encountered with the introduction of the grid pattern
is the possibility of the system state "sticking" to one position
in state-space where there are no rules available to provide a
controller output other than the default zero value. Moreover,

no rules can be created either, because of the grid restrictions.

—763—



ce;

-6 -§ -4 -3 -2-1 0 1 2 3 4 5 & 6 -5 -4 -3 -2 -1 0 1 2 3 & S & ~6 -5 -4 -3 -2 -1 0 1 2

R

— 4

-} -g—f—

—e

(b) e

|
'
-b-l—¢

©

(@ &

o

i

-6 I -

Fig. 2. Grid patterns of allowed rule positions in state-space

The effect of this on the response is that it will possibly show
a large steady-state error. If this effect occurs, a way of
overcoming it is by adjusting the trajectory by means of the
scaling factors - mainly GCE. Alternatively, a grid pattern can
be used where there are no complete paths in state-space
through which the trajectory could go without creating rules.
Such a diagonal type grid is shown in Fig. 2b.

Considering that rules existing on the setpoint might
force the trajectory away from it if they are not accurate
enough, a useful grid pattern is one that does not allow rules
on the setpoint, but only surrounding it, as shown in Fig. 2c.
To achieve this pattern and also have a symmetrical grid with
an allowable trajectory-starting rule (lef>>1, ce=0) the error
universe has to be increased to 15 points. Pairs of rules
surrounding the setpoint generally have opposite signs and
approximately equal value actions for a general linear process
model. Therefore, trajectories in-between those rules will be

forced onto e=0. Such patterns produce good results.

4. CONCLUSIONS

In conclusion, we mention that the techniques of static
clean-up and of dynamic deletion involve the deletion of rules
from the rule-base after they have been generated, whereas
the SRG technique involves the generation of fewer rules to
start with. The static clean-up technique can be considered as
a technique for tidying-up the rule-base and for improving
execution-time. It does not alter the control performance. The
dynamic rule deletion technique offers fewer total-rules
generated, slightly improved execution-time and slightly
improved control performance in certain cases. The SRG
technique offers vast reduction in total-rules, greatly improved
execution-time, better control performance and can be simply
implemented. In addition, SRG proved useful (even with
increased grid spacing) when the process was disturbed

randomly, since a large amount of unnecessary rules, that

O A L

P—*
-

would deteriorate control performance, was not created.

5. REFERENCES

[1] Yamazaki, T. & Mamdani, EH., (1982). "On the
performance of a rule-based self-organising controller”.
Proc. IEE Conf. on Applications of Adaptive and
Multivariable Control, Hull, UK.

(21 Mamdani, E.H., Ostergard, J.J., Lembessis, E., (1984).
"Use of fuzzy logic for implementing rule based control
of industrial processes”. In: Fuzzy Sets and Decision
Analysis, H.-J. Zimmermann, L.A. Zadeh, & B.R.
Gaines (Eds), North-Holland.

[3] Tanscheit, R. & Scharf, E.M., (1988). "Experiments with
the use of a rule-based self-organising controller for
robotics applications”. Fuzzy Sets & Systems, Vol. 26,
n. 2: 195-214.

[4] Sugiyama, K., (1988). "Rule-based self-organising
controller”. In: Fuzzy Computing, M.M. Gupta & T.
Yamakawa (Eds), Elsevier Science Publishers.

[51 Lembessis, E. & Tanscheit, R., (1991). "The influence
of implication operators and defuzzification methods on
the deterministic output of a fuzzy rule-based
controller”. Proc. 4th. IFSA Congress, Brussels.

[6] Lembessis, E., (1984). "Dynamic learning behaviour of
a rule-based self- organising controller”. Ph.D. Thesis,
University of London.

{71 Tanscheit, R. & Lembessis, E., (1991). "On the
behaviour and tuning of a fuzzy rule-based self-
organising controller”. In: Mathematics of the Analysis
and Design of Process Control, P. Borne, S.G. Tzafestas,
& N.E. Radhy (Eds), Elsevier Science Publishers.

Acknowledgement
This rescarch was partially supported by MCT and CNPgq,

Brazil.

—764—



