Thermodynamic behavior of the reconstructed W(110) surface

induced by hydrogen chemisorption

J.W. Chung

Physics Department and the Basic Science Research Center, Pohang Institute of Science

and Technology, Pohang, 790-330, Korea

P.J. Estrup

Physics Department, Brown University, Providence, RI 02912

We report changes of thermodynamic quantities upon crossing the (1x1) recon-

structional phase transition of the W(110) surface induced by hydrogen adsorption.

We find that the desorption energy decreases from 40 to 21 kcal/mole while pre-

exponential factor drops by six orders of magnitude from 10 to 10⁻⁶ cm⁻¹s⁻¹ as

hydrogen coverage θ changes from 0.5 to 0.75 monolayer(ML). The coverage $\theta=0.5$

ML matches with the critical coverage where the (1x1) reconstruction begins. We

also observe change of total entropy by $6k_B$ crossing the transition, revealing an ac-

tive role of substrate reconstruction in reducing the total free energy of the system.

Further physical implications of changes of these thermodynamic variables in regard

to a driving mechanism of the reconstruction are discussed in detail.

PACS numbers:68.35Md, 82.65.Dp, 65.50.+m

113