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Abstract

We study how to design conventional feedback
controllers to drive chaotic tr;ljectories of the well-known
systems to their eqnilib'rium points or any of their
inherent periodic orbits. The well-known chaotic systems
are Henon map and Duffing's equation, which are used
feedback
controller forces the chaotic trajectory to the stable

as illustrative examples, The proposed
manifold as OGY method does. Simulation results are
presented to show the effectiveness of the proposed

design method.

1. Introduction

Chaos is an ubiquitous and robust nonlinear phenomenon
which permeates all fields of science. Roughly speaking,
chaos is a more exotic form of steady-state response. A linear
system cannot exhibit chaotic vibrations. It can be seen only
in the deterministic nonlinear systems. When nonlinearity is
present, there exists a wide range of parameters where the
steady-state‘response is'boun}ied, but not periodic. Instead,
the response waveform becomes erratic with a broad
continuous ( rather than discrete as in the periodic case )
frequency spectrum. Moreover, the response is so sensitivity
to initial conditions that unless a computer of infinite word
length is used in the simulation, no long-term prediction of
the precise solution waveform is possible.

One of the inherent properties of the chaotic systems
is so called the sensitivity to initial conditions(SIC). The two
trajectories which are started from arbitrarily close initial
conditions diverges exponentially. Lyapunov exponents are
the measure of such an exponential diverging rates. So, they

can serve as a criterion whether the system is chaotic or not.

Another important property is the fractal structure. Many of
the chaotic systems reveal the self-similarity. Hence, even the
infinitesimal portion of the chaotic attractor has as much
information as the whole system has. )

It is often desired that chaos be avoided and/or that
the system performance be improved or changed in some
way. Thus, given a chaotic attractor we study how feedback
controller can lead a chaotic trajectory to a desired attracting
time-periodic motion and improved performance. Since the
chaotic attractors are closures of the set of unstable orbits,
stabilizing their equilibrium points and any of their inherent
periodic orbits is interesting. If the stabilizing is easily
achieved, one might use the chaotic system for multi-
purposes. Therefore, the system having purposely built-in
chaotic dynamics deserves the desired flexibility.

2. Previous Researches » .

In the past few years, there has been increasing interest in
controlling the chaotic systems. E. Ott ef al.[1] suggests an
outstanding work called OGY method. Their method does
not need any mathematical model. Introducing a carefully
chosen small time-dependent perturbation of the acceptable
parameter is all for the control of the system. Ute Dressler ef
al.[2] extend the range of applicability of the OGY method
using time delay coordinates. Experimental control of chaotic
system (a gravitationally bucklied, amorphous magnetoelastic
ribbon ) is performed by W. L. Ditto et al. [3]. The numerical
simulation of the kicked double rotor is the first attempt to
control the chaotic system in engineering sense by F. J.
Romeiras ef al. {4]. But all of the previous researches are
basically based on the OGY method, which shows the long

time to achieve control. The average time to achieve control,
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(1) is linearly decreasing with respect to the maximum
perturbation p° in log-log scale [1]{4]. Averagingly, 10°~10*
order of iterations are needed to achieve control. This is the
inherent ergodic property of the Chaotic attractor and the
main drawback of the OGY method.

We propose the conventional feedback control
method to control the chaotic systems. Qur method has a
disadvantage of requiring the mathematical model of the
system but reveals fast the desired
performance. The minimum time to achieve control and the

convergence to

minimal effort to control is a trade-off.

3.  Numerical Examples

3.1 Henon Map

An extension of the quadratic mﬁp on the line to a map on the
plane was proposed by the French astronomer Henon:

xm1=1+yn_axn2 )
Yo = bxn i

When b = 0, one obtains the logistic map studied by May and
Feigenbaum. Values of @ and & for which one will get a
strange attractor include a =14 and »=0.3. This map is
plotted on the x— y plane with graph limits —2<x <2 and
-0.55 y<0.5 as shown in figure 1. a). After obtaining the
attractor, the graph is rescaled to focus on one small area of
the attractor in which the fractal structure is shown in figure

1. b) and c). The reported Lyapunov exponent is 4, = 0.2 and

the fractal dimension is dL =1.264.

3.2 Duffing's Equation

Duffing's” equation is a nonlinear oscillator with a cubic
stiffness term, to describe the hardening spring effect. A
modified version of duffing's equation for a nonlinear
inductor in an electrical circuit is also treated by Ueda. In this
paper, we consider another modified Duffing's equation
which is more general, studied by Moon and Holmes.

x=y

. ) @)
y=-px—x —qy+rcos(wt)

The magnitude of forcing term, » is the source of chaotic

vibration. Some typical periodic and chaotic solutions are

plotted on figure 2, where p=0.4, g=~1.1, w=1.8, and the

values of r are cited therein.
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Figure 1. Illustration of Self-similarity of the structure of
: The small
box on the figure is enlarged into the following figure.

the Henon attractor at different scales

Note the change of scale in the axes.
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Figure 2. Some typical solutions of the Duffing's equation

a) r=066 : period - 1 solution
b) r=071 : period - 2 solution
<) r=r =21 : chaotic solution

4.  Design of the Feedback Controller
4.1 Feedback control of the Henon map

We want to stabilize the Henon map on its equilibrium point.
It has two equilibrium points, but the only one (x_, y,) will be
considered, for near that point the whole system trajectory is
wandering chaotically.

. _b—]+\/(b~l)’+4a
< 2a 3)
Y, =bx,

After linearizing at the equilibrium point and adding control
matrix following the canonical form, Henon map is
represented as a linear system near that point as follows.

N BV 4
[yrnl]—_ [yn] "" (‘ )

—2ax 1 0 X ~Xx
where A = ¢ ,B= andw =K[ " |
b 0 1 " y.—J,

Since the linearized system is completely state controllable,
the original Henon map is locally controllable near the
equilibrium point.

To determine the feedback gain matrix K,
Ackermann's formula can be used,

C=[B 4B),
W:[a' l:l,

1 0
T=CW,

K=[o,-a, o-a]T"
where C is the controllability matrix, a's are the coefficients
of the characteristic polynomial of 4 and a's are the
coefficients of the desired characteristic polynomial of
A+ BK.

Applying the Jury's stability test to the linearized
system, the ranges for the elements, K =12 of the
feedback matrix, K are found to be the following as shown in
figure 3.

) |K +2axK,+b|<I

b 1
i) K 1- -——-K S
i) ’<[ 1+2ax'] a+2ax ®
i) K<ie—2 -1 g
2 2ax -1) 2ax-1"
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Figure 3. Stable region of the feedback gain (X ,X,) for

the control of Henon map : Triangular region, R is the
stable region. The curve i), ii) and iii) denote the
conditions obtained from Jury's stability test (eq.(5)).

Since the above range is calculated form the linearized
system, eq. (5) isn't the precise representation.

The state space trajectories of the controlled Henon
map are plotted on figure 4. a) and c) where K, =12, K, =0
and KIF= 3, K, =-1.5 are used respectively. The control of

the higher order orbits are straightforward.
4.2 Feedback control of the Duffing's equation

Our objective in this section is to control the chaotic
trajectories to the equilibrium point and any of their inherent
periodic orbits. Let (x”,y") be one of the inherent orbits,
which acts as a reference input. Then, (x",y") is also the
solution of the eq. (2). Subtracting eq. (2) with (x,y) being
replaced by (x, ") results in

Ax = Ay

8 = - phx— gy (2~ ) + (- Yeos(w) u(t)

where Ax =x-x", Ay = y- )", r_is the magnitude of forcing
term that causing chaotic response, r* is for the reference,
and u(¢) is the nonlinear control input.

Based on eq. (5), we choose the control law, u(t) as
follows.
u(t)=~K (x~x") - Ky(y—y‘) + 300" = 3 ~{r.—r")cos(wt)

Q)
Finally, the eq. (6) becomes
Ax = Ay

85 =-(p+ K )av =g+ K )ay - ¢ ®

Consider the Lyapunov Candidate

+K
v=E215% 5 Ax’+£Ax‘+%Ay’ )

Differentiating (9) shows

definiteness of V',
V=[(p+K )Ar+Ax' Ak + AyAp

the negative ~semi-

=[(p+K )ax+ A )y + y[~(p+ K Jax- (g + K Jay - A¢]

. =(g+K )ay <0
[Equality holds if and only if Ay=0, so that the Lyapunov

function, V' is negative semi-definite. Applying the invariant
_ set theorem, eq. (8) is asymptotically stable. The plot of

" controlled Duffing's equation is shown in figure 5.

5. Simulation Results

Figure 4. a) shows the result of the feedback control of
Henon map with feedback gains, X =12 and X, =0. No

control is applied before »>3000. If #23000 and the
trajectory seems to falls near the equilibrium point( say, basin
of attraction), then the control is activated. The chaotic
trajectory is driven to the equilibrium point very quickly. If
we use the OGY method, it will take 10°~10* iterations that
the chaotic trajectory settles down to its equilibrium point.
After the control is just applied, the trajectory seems
to move away from the attractor. But it does not take a long
time that the transient trajectory which looks like wandering
about a straight line, y ~2x_finally goes to the equilibrium

point. From eq. (4), the stable and unstable directions which

.

can be easily calculated are e =[0.4612 0.8878])" and
e,=[-0.9881 0.1541]", respectively. The stable manifold
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Figure 4. Controlled Henon map

a)

K, =12 and K, =0 : The cross point of the

two dashed line is the equilibrium point.

b)
)
d)

K =12 and K, =0 : Control input, u_
K, =3 and K, =-15: Phase space trajectory
K =3 and K, =-15 : Control input, 1,

b)

Figure 5. Controlled Duffing's Equation
a) The chaotic state space trajectory finally
settles down to its inherent period - 1 orbit.
b) Control input, u(r)

near the equilibrium point lies on the following direction.

0= tan“'(m) =62.55°
! 0.4612

0.8878

0.4612
Hence, it can be understood from the above fact that the main

and =1.925=2

control effort of the proposed feedback controller is to force
the next iterate onto the stable manifold of the equilibrium
point as the OGY method does.

Comparing the figure 4. a) and c), the transient
iterates are considerably reduced as the magnitude of
feedback gains are increased.

The simulation results of Duffing's equation are
plotted in figure 5. Total simulation time is 50 second, while
control is started right after a quarter of that time is past. The
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everlasting oscillatory feature of control input is in order to
compensate the exciting term, r cos(wt) in eq. (2). As shown
in the Henon system, it also reveals fast convergence
characteristic to the desired performance. Stabilizing more
high periodic orbits is just a tedious work.

6. Conclusions and Future Works

We propose the feedback controller to control the chaotic
system to its equilibrium point or any of its inherent periodic
orbits. The main control effort of the proposed method- for
Henon map is to force the next iterate onto the stable
manifold of the equilibrium point.. For a continuous-time
system, nonlinear feedback controller is used. The linear
feedback controlier is a more useful but more difficult one to
obtain. So, it is left to the future work.

When compared with the OGY method, fast
convergence to a desired performance is another advantage
of our method while the control effort is not so much. But we
have assumed that a mathematical model of the system is
available. Thus, to overcome the model imperfection and the
lack of model equation will be an interesting research issue.

References

[1] Edward Ott, Celso Grebogi, and James A. Yorke,
"Controlling Chaos," Physical Review Letters, Vol. 64,
No. 11, pp. 1196~1199, March 1990.

[2] Ute Dressler and Greger Nitsche, "Controlling Chaos
Using Time Delay Coordinates," Physical Review
Letters, Vol. 68, No. I, pp. 1~4, January 1992.

[3] W. L. Ditto, S. N. Rauseo, and M. L. Spano,
"Experimental Control of Chaos," Physical Review
Letters, Vol. 65, No. 26, pp. 3211~3214, December
1990.

[4] Filipe’J. Romeiras, Edward Ott, Celso Grebogi, and W.
P. Dayawansa, "Controlling Chaotic Dynamical
Systems," in Proceedings of the American Control
Conference, pp. 1113~1119, 1991.

— 1239 -



