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Abstract

. In this paper, an variable structure system with an
integral-augmented sliding surface is designed for the im-
proved robust control of a uncertain multi-input multi-out-
put(MIMO) system subject to the persistent disturbances. To
effectively remove the reaching phase problems, the intergal
augmented sliding surface is defined, then for its design, the
eigenstructure assignment technique is introduced. To guar-
antee the designed performance against the persistent distur-
bance, the stabilizing control for multi-input system’is also
designed. The stability of the global system and performance
robustness are investigated. The example will be given for
§howing the usefulness of algorithm.

1. Introduction

The Variable Structure System(VSS) can provide the
effective means for controlling an uncertain dynamical sys-
tem. The most distinct feature of the variable structure system
is the presence of the sliding mode on the predetermined
sliding surface[1-3]. The design stage of the the multi-input
VSS are as follows: First, the sliding mode is designed to
have some prescribed properties. Next, it is assufed that the
sliding mode can exist at any point of the intersection S = O of
the sub-sliding manifold. Finally, it is guaranteed that the
representative point of the system reaches a sliding surface in
finite time because of the stability in the reaching phase[3].
By proper design of the sliding surface, the desired output
dynamics can be obtained. Several design methods including
the eigenstructure assignment, geometric approach, and the
optimal technique[5-8,12-14] are suggested, and well summa-
rized in [15]. All these methods yield a linear dynamics in the
sliding surface. Moreover, the nonlinear dynamics can be
assigned for better transient dynamics than that of only linear
methods{2,9], and the integral action can be augmented to
improve the steady state performance[12-14], and called as an
integral VSS(IVSS).

Unfortunately, since the sliding surfaces used in the
previous VSS’s are fixed, naturally, the reaching phase exists
for the initial condition far from the sliding surface[4]. The
reaching phase is defined as the trajectory from a given initial
state to the first touching to the intersection of each m-sliding
manifold, in which the robustness to the parameter variations
and disturbance can not be guaranteed[4]. And it is difficult
to find the designed performance of the sliding surface in the
output. This problem is compounded, when the hierarchical
control methodology(1] is applied[4]. Moreover, introducing

the integrator without removing the reaching phase can
inevitably results in the overshoot problem because the
integral should be re-regulated to zero in steady state[12-14].
Thus no overshoot which is one advantage of the VSS is
sacrificed. To slide from a given initial condition without any
reaching phase, the sliding surface basically should be’a
function of the initial condition explicitly or implicitly.

Few researches deal with the problems of the reaching
phase compared to the established works on the VSS. Only
partial or restricted results on this subjects have been ob-
tained[2,10,11]. The alleviation of these problems is the use
of the high-gain feedback to reduce the reaching time[10].
This has the drawbacks related to the high-gain feedback
sensitive to the unmodelled dynamics and actuator satura-
tion[6]. In [2], Itkis proposes the adaptive changes of the
sliding surface to reduce the reaching problem. This method
is effectively improved by [11] for only a second order
system, but the initial condition is limited to some degree in
state space.

In this paper, an variable structure system with an
integral-augmented sliding surface for the improved robust
control of a multi-input multi-outputMIMO) systems. The
reaching phase problems are isolated and the results from
removing them are concentrated on, specially, the perfor-
mance robustness in presence of the persistent disturbances.
By the simulation studies, the effectiveness of the algorithm
is compared with that of the VSS’s with the linear sliding
surface and previous integral-augemented one in [12].

2. Variable Structure System with an Inte-
gral-Augmented Sliding Surface

2.1 System Descriptions and Basic Backgrounds

The problem of the designing the VSS controller is
cpnsidered for a multivariable system:
Y()=(A+AA(Y 1) Y (1)

+B+ABY ) - U H+D(Y,) Y =Y(0) n

where ¥ € X", U e %", and rank(B)=m. The primary design goal
of the VSS controller is to asymptotically stabilize this
uncertain system with quality of guaranteeing the prescribed
performance designed for the nominal of (la). For simple
formulations, the nonsigular coordinate transformation, T is
introduced as{5]

X=X X1 =T Y@ @
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such that 7y 1. p(v.0) = [0 B,X )T

where X, e ® -~ and X, e ®~ are the partitions of X ¢ %". By (2)
the dynamics of (1) can be represented in regular form{4,5] in
X space as

X, =4, X () +A, X,(0), X} (3a)
X',(r) = (A, +AA (1)) X (1) + (A + DA (1)) - X, (1)
+(B,+AB (1) - UWY+D' (X 1), X2  (3b)

where rank(B))=m; A, € R"%0-™ 4. e RO~ A, e K- and
Ane X7~ are known constant matrices; and x?&x? are the
initial conditions transformed from ¥°. It is well-known that
the VSS design will exhibit the strong invariant property with
respect to disturbance vector if only if the matching restric-
tion is satisfied[1,2]. Thus, Assumption 1 is introduced as

Assumption 1:(Marching Condition)

) The uncertaintigs AA(.,-), AB(.-) and disturbance D(.-)
satisfy the matching condition and are bounded as the.

following
AA' =By 84, |44, (0] <0y, (4a)
A", =B, 04y, | Mzz;j(t) i< O 4b)
* AB’,=B,-AB,, |AB,(1)|<B, < (diagonal) (4c)
AD",=B,-AD,, IDz;j(’)|<Yzij 44a)
for i, j=12,..0m,&k=12...(n-m).
The nominal system of (3) can be described as
X=A-X+T-v(@) 5)
where
A, A 0
A=|CH i i r =[ :,
Azn AZZ BZ

which will be used in the output performance design. Using
(4) and (5), the system of (3) can be rewritten in neat form as
X=A-X+T-[UW+EX.] (6a)

where E(X.) signifies the lumped uncertainties or persistent
disturbances as

EX,)=A4A,,-X,+AA,, - X, +AB,- U(t)+AD (1)  (6b)
For (6), the VSS controller will be designed by two stages,
i.c., the design of the sliding manifold and the switching
control design.

For the use later, the integral terms, X,e ®'.r=<n are
augmented to the system (6) as

Xo(t) =Ag- X(O)=Ag - X (1) +Ap- X3(0), X3 (D)
where x? and A,={A,: 45} € ®°** are its initial condition and the
coefficient matrix for matching of the dimension, respective-
ly, both:will be determined in the sliding surface design.

To obtain the design goal, the reaching phase problems
are to be solved, as the demerits of the conventional VSS’s.
The reason for the existence of the reaching phase will be
reviewed for the conventional sliding manifold §:% - %"
composed of the set of the sub-manifold as[1,2]

SX)=CT-X=C-X,+C,-X,, (=0) @®

where rank(Cy)=m. Since the sliding surface of (8) defines
geometrically only the fixed states satisfying $()=0 for a
given x°e 5() = 0, the reaching phase exists. During this phase
the robustness is not guaranteed, thus the designed perfor-
mance is not preserved. To perfectly remove the reaching
phase, it is required that (i) the sliding surface should be
defined from a given initial condition, and (ii) the control
input should be enable to establish the sliding mode at every
point on the sliding mode.

2.2 Integral-Augmented Sliding Surface

To get rid of the reaching problems, as the first stage,
an integral-augmented sliding manifold, s(y% -~ %~ is pro-
posed for (7) by composing as

s@Ey =5,X)+5X) (=0) %a)
where §,():R" - %", §,(xR" - R~ are the modified conventional
linear and intentionally integral-augmented terms, respective-
ly as

§X)=C]-X=C,, R +Cpy- ;=X cp £, (9b)
i=1
. S,()?):C,T-)?0=C,,-X01+C,,-Xm=‘}:lc,,--fm (9¢)
Ri=x,~x), for i=12,.n
fm=fx,-(t)dt—x;. for i=12,..n
N
C,; = constant, for i=L&I.

This sliding surface geometrically defines all the states
satisfying

X e {X(t)e R"[S(X)=0and S(X)=0}. (10)
Obviously $(x* =0 for any initial X°e 9", so the sliding surface
of (10) is defined from any given initial x°e %*. Thus, one
requirement to remove the reaching phase is satisfied. The
full reduced-order ideal sliding mode dynamics(ISMD) with
n-order of (9) can be obtained as
X, =A,- X\ () +A, X, (1) (11a)

Xz = —C,:;[(C“A” +Cp) X+ (CLAR+Cr)- X0} (11b)

which is the dynamic interpretation of (9a). Thus the solution
of (11) for a given x° generates the integral manifold
coinciding with (9), and the stability of (11) is equal to that of
the sliding surface itself. Therefore, the stable design for the
sliding surface will be carried out in order to yield the
desirable performances using the eigenstrucuture assignment
to (11). Manipulating (11), it leads to

X)) =A-Xt)+T-v(), x° (12a)
where ve ®°
v=—K, -X,(t) - K- X,(1) « (12b)
and
K, =B;I[A21+CZ;(CL|AH+CI|)] (12¢)
K, =B;'[A22+C[§(C,_|A,2+C,,)]. (124)

Since, as can been in (12a), it equals to the nominal dynamics
of (5), the design of the sliding surface is the performance
design to the nominal systems of (3), and the reverse
argument also holds.

To determine the feedback gains in (12), ie., the
coefficient of (9), it is assumed that the desired closed-loop
poles and those right eigenvectors are given, the procedures
of the eigenstructure assignment are as follows[16]:

1) Compute the maximal rank matrix
T N=IMT, s=ishsy

for i = 1,....s satisfying the following relation:
[A-MIT1-N,=0

(13

where s
N.- € C(nom)xm‘ S,-E C(nwn)xn‘ & Zd,-=l1.
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2) Form the generalized right eigenvectors for i =1,....s as
follows:

V; = Syivii-

j=1d, (18)

|+N1.‘P.'j-

where v,=0 and pif(i=1L..5j=1...d) are sqlectcd to
satisfy such that v is full rank and A, =% implies v;=v,,
where

A=Ad T wiT =v, (15)
3) Calculate vector chains as follows:

w,.j=s,jv,-/-_l+N,,-p,-,- (16)
fori=1,..p:j=1...4d.
4) Calculate feedback gain

K=[K K)=wV" an

For the more detailed procedures, one may refer to {16].
Then, the coefficients of the sliding surface (9) can be
obtained using (12c-d) and (17) as

CZ;(CLlAn"’Cn) =BK -4y (17a)

Cii(CuAn+Cp) =B K, ~An (17b)
This may be not unique, but gives the pragtical design
guideline with much degree of freedom. The choice of C;; and
C,; determines the necessary order of the integration and A,.
Specially, if C,, =1, without loss of generality, then

CL|A1|+C11=32K1'A11 (18a)

CLAn+Cp=BK,~-Ay (18b)
Fina'xlly, to complete the design of the sliding surface, the
initial value of the integral action is found as

X' ==C;-(C,- X +C X))

where ¢; is the reft-pseudo inverse of C; as cr=icfer'cl. Thus,
the integral states converge zero from the this finite values of
(19) and its rate convergence depends the relationship be-
tween C;s for a given x°.

(19)

2.3 Stabilizing Control

As the second phase, the control input will be designed.
For the reason that it is difficult for the control to directly
establish the sliding mode on the pre-determined sliding
surface, the sliding surface is transformed to s° space by
HX1)=[C.B,T"

S'®R)=1C.B,) " S®X)
based on Theorem in [1] as

Theorem 2: The equation of the sliding mode is invariant
with respect to the nonlinear transformations

S'X)=H,(X.0)-S(X), U'X)=H,(X.0) UX)

(20)

for detH,#0 & detH,+0

where ’det’ denote determinate of a matrix.

Proof: See [1].

This theorem means that the sliding mode equation  is
governed by the original (10) if the components of the
controlled vector undergo discontinuity on the new surface
s'®%)=0 or the components of the new control vector U’()
undergo discontinuity on the already chosen surface S(X) =0,
that is $'®)=0e S(X)=0. Thus the performances designed in
(10) can be guaranteed by the sliding mode on the new
surface s°(X)=0. To generate the sliding mode on s'(X), the
following class of feedback control is employed as

UX,X;) =V, (X,X,) + AV(X, X,)

@21

(22q)

where v,, is the equivalent control for the nominal system of
(1) determined according to the design of the sliding manifold
as

VX X)) =—((Cp Ay + CLAn +Cp) - X,

+(CLA+CAn+C) - X5

which governs the desired main sliding dynamics for (10),
and Av cancels out the uncertainties and external disturbances
to maintain the sliding mode on pre-specified manifold from
XO

(22b)

AV, X)) =¥, X, + ¥, X, + ;- X,

+8-5gn($N)+x-S'] (22¢)

and the switched gain matrices ¥,e K™, ¥, € RV, ¥, € R,
and 5& xe dig[®"*"] can be selected by the inequalities as
follows:

> 0 for (s,-'~xoh)>0

\P()ih .
< 0 for (si -xoh) <0
v > (O +By K(1-By) for (s)-X,)> 0}
" < (0 + By - Ky d(1 - By) for (Si‘ 'f'u) <0
v > (O + By K)(1=By) for (s7-x,)>0 }
2'7 < (O + By - K1 - B} for (s “Xy) <2
> (yzi)/(l —B) for (>0
S, . (22d)
< —(yl‘.)/(l _B,) for (s)<0
x;>0.
forh=1,..r, i,j=12,...m, k=12, . (1-m)&I=12,...1.

For this control, the existence of the sliding mode on every
point of s'(%)=0 and stability will be investigated in next
Theorem.

Theorem 3: The closed loop system, (1) with (42), is totally
asymptotically stable with respect to S(¥)=0, eventually to
the origin of (2n +r)-th order state space provided that s’(%)=0
is asymptotically stable.

Proof: Take Lyapunov candidate function as

v=125".5".
Efrom (3) and (40c), the derivative of 5°'¢x) becomes
S (1) =(CriAn+CoAu+Cn)- X, HC AR+ CLAn + C) - X,

+,,(X,.X)) + {84, - X, + A4, - X, + Dy(X 0)

*(23)

= ABy(v, (X .X) + AvX X))} 24

Rearranging, it follows
S () =-¥,-X,

‘[ABZ(Cngz)_l (CLiAn+ CLzAzx + Cn) - sz +{,—48,)- \Yl] : Xl
_[AB'z(CLsz)-l (CL 1A12 + CLzAzz + Cn) - Mzz +{. - ABz) ° \{12] X,
—[8sgn($7) - D,(X 1)

x-S, (25)
Finally, using (22d), the following equation can be derived
. & o2 .
5 -8 <—K;-§5;, i=12,...m (26)

which implies that the proposed algorithm can guarantee the
sliding mode at the every point on the new sliding surface
s'(®)=0. Therefore, based on Theorem 2, the motion equations
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in the sliding mode on the proposed sliding surface is
invariant, and the controlled system is asymptoticaily stable
to s°(X) =0 naturally including the origin.

By Theorem 3, the reaching phase can be removed so that the
designed performance for the nominal system of (10) is
guaranteed, and the reachability of the controlled system does
not need to be considered.

The original control U(Y) for (1) can be found from (22)
as

Uy(Y) = Uy(TY). @7
Fig.1 shows the overall diagram of the algorithms, which can
gives rises to the original design goal by the sliding mode on
s'®)=0 with the predetermined performances in S(X)=0
without any reaching phase problems, whereas the conven-
tional muitivariable VSS and IVSS suggested by Chern and
Wu[12] do not give the performance robustness due to the
reaching phase problems. . .

To show the effectiveness of the algorithm, an example
will be presented.

3. Illustrative Example

The control of an uncertain MIMO system is presented
for the purpose of performance comparison between the VSS
with a linear sliding surface, integral augmented VSS of
Chern and Wu[12] and the proposed algorithms using the
following 4-Th. order plant as

0 1 0 0 0 0

—a,(f) 0 —ayH) O by 0| -
o0 o o 1Yo oY

—ay() 0 —ay)) O 0 by

+H0 A() O h,(t)]r, Y’=[4 0 2 0F (28)
where the system parameters a (), gains &,(), and distur-
bances k(1) of the plant are assumed such that

a(ty=—1+Aa,(t), —0.5<Aay(t)<0.5

b()=1+Ab(1), -0.5<b(1)<0.5

Fh() <4, (29)

By the simple transformation, the system (28) can be trans-
formed to

X, =X, X'={a2] (30a)

X,=A% X, +B’-[U+EX.H)], X°=0 (30b)
where X, = [x, x,I", X, = [+, 2,7, A, and B?

Af,:[:ll :i] & Bl=1, (30c)

Letting E(X ) =0, (30) becomes its nominal system. For (30),
the three algorithms will be designed. To design the proposed
algorithms, first, the proposed sliding surface is designed to
have the double poles at each -3 and-4 with corresponding
right eigenvectors as

(03162 0 -0.9371 0], [0 02425 0 -0.9701)(31)
using the eigenstructure assignment to the nominal system of
(30). By the computation algorithm, (14)-(17), the feedback
gain of (12b) is founded as follows:

80 -10 60 00
K=[K‘K’]=[-1 150 0.0 8}

Then, using (18a) and (18b), the coefficients of the sliding
surface can be determined. Eventually, the integral augment-

(32)

New Augmented Sliding Surface

e(x,t)
. o1 sx0 -
—={Controller>Y T [ X0 ls(8)=C(x- x9
b Yk Eﬁg‘ +Cy(x-x")
Plant v .(t) ’ g
x* x;
Switching Strategy

Fig. 1 Overall block diagram of the proposed lagorithm

ed sliding surface has the form of
.. [6 0 4 9 0 2.556
sr(’)—[o 8]'(X1(')'[2D+Xz(')+|:o 16]'(}(10(’)—[ 1 D

. 33
Consequently, the necessary integral action with the initial
condition is augmented as follows:

x,,‘,=f X,(1)d, X, =[2.55 1T (34)
0

On the other hand, the linear sliding surface is defined

23 0 10
SL(x)z[o 2.5]"“*[0 1]'X’

designed to have the simple pole at -2.3 and -2.5 of its sliding
dynamics, and the sliding surface proposed by Chern & Wu
becomes

as

(34)

, |
so=ly O] xosls 2lxosly xo o

also designed to locate the poles of sliding dynamics at -1 and
1.15+j0.835. As a result of the selection of the proposed
sliding surface, its ISMD becomes

X|=Xz. X:’=[42]T (36a)
= 0 - 60 . 0 _
X’"{o 16]"('(’) [0 8] X, X;=0, 120. (36b)

As the second design stage, fortunately [C,B8,]=1, the
control input for the suggested sliding surface becomes

U,=v,,tA4y, (37a)
where U, ,, called equivalent control[1-3] of (33)
8 1 6 0
vcd-P—./{[l 15:|‘Xl+[0 8]'X1} (37b)

which is determined in previous design stage for the sliding
surface and the discontinuous control term is

Av, ==Y X,-¥' X, -V X,-8-5gn(S,) (37¢)
where ¥°, ¥', and ¥'eR™ are the switching gain matrices
selected by (22d) as in Table 1. For the other algorithms, the
switching gain matrices are are also summarized in Table 1.

All the simulations are carried out for the 2{msec)
sampling and on the conditions without or with the persistent
disturbances for (30b). The results of the simulations for the
three schemes are shown in Fig. 2 through Fig. 4. Fig.2 shows
the results by the conventional VSS with the linear sliding
surface. Fig. 3 shows the results of the IVSS by Chern and
Wu. And for the proposed algorithm, the results are shown in
Fig. 4. In each figure, (a) shows the three outputs of x, for the
ISMD defined by the each sliding surface(i), for without
disturbances(ii), and for with disturbances(ii). The outputs of
x, for the three cases are depicted in each (b). Each (c) and (d)
show the phase trajectories of x, and x,, respectively for the

- 1209 —



4 2 ]
-4 1.8 3
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- i) without disturbances ] E!? without disturbances
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0 —r ¥ g v T o -
o 0.4 X} 1.2 1.6 2.0 2.4 28 o 0.4 o8 1.2 1.8 20 24 28
Time [sec] Time [sec]
(a) outputs, x, (b) outputs, x,
[} ; 0
b (ii) without disturbances 1 {it) without disturbances
1 (iit) with disturbances 2 (iii) with disturbances \
-2 4 -4
-3 A 6 7
-4 4 -8 A
| @) ISMD - 1 (i) ISMD
-5 + v v —~——r— —— ~— -10 T -
] 0.4 0.8 1.2 1.8 2 0 1 2 a 4
(c) phase trajectories of x, (d) phase trajectories of x,
10
1) without disturbances
i) with disturbances 8
6 i) s2 without disturbances
il) s2 with disturbances
ill} s1 without disturbances
u 4 iv) 81 with disturbances
0 2 A
4
4 [
8 4 —_ - - ~— Ty e v
] 0.4 08 1.2 1.6 2.0 2.4 28 [+ 0.4 0.8 1.2 1.6 2.0 2.4 2.8
Time [sec] Time [sec]
(e) control inputs, U, () sliding surface time trajectories
Fig. 2 Results of the conventional VSS with a linear sliding surface
2 4
1.6 - a |
1 (1) 1ISMD
1.2 Il? without disturbances ? S|
J ill ) with disturbances R sl ) without disturbances
2 iit) with disturbances
0.8 1
B
0.4 1 1
[}
] o~ °
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+ T — — -1 e
o 0.4 0.8 1.2 1.8 2.0 2.4 2.8 o 0.4 0.8 1.2 16 2.0 2.4 28
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(a) outputs, x, (b) outputs, x,
=
° 0
! \ ]
| i} ISMD -2 i) ISMD
-1 i) without disturbances B i) without disturbances
E itt) with disturbances iH) with disturbances
4 A
-2 4
- ~8" 4
.3 -
1 - -8 o -——
-4 4 overshéot { overshqot
y——r - -10 v
-0.4 0 04 08 12 18 2 - ° 1 2 3 4

(c) phase trajectories of x,
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30 10
4 (i) without disturbances R
b (i) with disturbances a8
20 1 R
i s (1} 52 without disturbances
10 4 (i) s2 with disturbances
i (1) s1 without disturbances
1 4 (iv) 81 with disturbances
o -
4 2 J
-10 4 o
0 04 08 1.2 1.6 20 24 28 0 04 08 12 16 20 24 28
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(e) control inputs, U, (f) sliding surface time trajectories
Fig. 3 Results of the IVSS suggested by Chern and Wu
4 2 ]
4 1.8 ]
3 i) 1ISMD 167
i 8?? without disturbances 147 (|| Iusllmgut disturbances
il) with disturbances 1.2 sill) with disturbances
2 1.0 :
- 0.8
1 0.6 ]
J 0.4 ]
‘ e .
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0 o4 08 42 18 20 24 28 0 5 o4 o8 12 18 20 24 28
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(a) outputs, x, (b) outputs, x,
0
0 4
- 1) ISMD 0.4 - (i) 1ISMD
}('II)? without disturbances R {ll? Mmou‘l dl:‘l;:'bancol
-2 il) with disturbances 08 1) with disturbances
1 -1.2 4
4 ' 1
-1.8 jJ
J -2.0
.6 i
Y r v + v . v 2.4 +—Vr-r—r—r—r—r—r— v —r—r

0 1 2 3 4
() phase trajectories of x,

(1) without disturbances -
(il) with disturbances

0 0.4 08 1.4 1.6 2
(d) phase trajectories of x,

(i) 81 without disturbances ——
(i) s1 with disturbances

(i) s2 without disturbances
{iv) 82 with disturbances

<30 Ay T T 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
o 0.4 0.8 1.2 1.6 2.0 2.4 28 Time [sec]

Time [sec] o q . . .
. sliding surface time tra
(e) control inputs, U, ® & jectonies

Fig. 4 Results of the proposed algorithm

three cases. The control and the time trajectories of the each turbed by the persistent disturbances. The exact predetermi-
sliding surface are presented in (¢) and (f), respectively. As nation “of the desired output dynamics is not possible.
can be seen, the three case outputs of the conventional VSS Moreover, in the outputs by the IVSS, the overshoot occurs
and IVSS are different from each other because the effect of as the expected due to mere introducing of the integral
the disturbances during the reaching phase. The reaching actions.

phase of the trajectory from the initial state to the first On the other hand, in case of the proposed, the three
touching of the sliding surface can be founded in the each outputs of x, and x, are identical without any reaching phase
trajectory, since the sliding surface does not deifned from the and with no overshoot as the designed. Thus, with the

given initial condition. Thus, the controlled system is dis-
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Table 1 Selected gain constants satisfying
the gain inequalities

and- with no overshoot as the designed. Thus, with the
proposed technique, the performance robustness against the
persistent disturbances is obtained, also, the prediction of the
outputs is feasible. )
From the above comparative simulation studies, the
proposed algorithm has superior performance over the previ-
ous methods in view of the reaching phase problems,
predetermined output dynamics, and robustness.

4. Conclusions

The VSS with an integral-augmented sliding surface
are proposed for the improved robust control of a linear
multivariable uncertain systems by removing the reaching
phase problems. To deal with the problems of the reaching
phase, an integral augmented sliding surface is defined, and
for its effective design, the traditional eigenstructure assign-
ment theory is employed. Using the transformation technique
as a diagonalization method, the stabilizing control is de-
signed to generate the sliding mode on the new transformed
surface, while the designed performance is still conserved.
This property is shown through the stability analysis. Using
the suggested algorithm, the perfect robustness for whole
trajectory can be effectively obtained under the bounded
parameter variations and disturbances, while the conventional
VS§S’s suffer from the reaching phase problems. The advan-
tages of the algorithm can be pointed out as perfect perfor-
mance robustness, predetermined output dynamics, and pre-
diction of output.
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