System Identification Using Neural Networks

뉴럴 네트워크를 사용한 시스템 식별

  • Published : 1993.07.18

Abstract

Multi-layered neural networks offer an exciting alternative for modelling complex non-liner systems. This paper investigates the identification of continuous time nonliner system using neural networks with a single hidden layer. The digital low - pass filter are introduced to avoid direct approximation of system derivatives from sampled data. Using a pre-designed digital low pass filter, an approximated discrete-time estimation model is constructed easily. A continuous approximation liner model is first estimated from sampled input-out signals. Then the modeling error due to the nonlinearity is decreased by a compensator using neural network. Simulation results are given to demonstrate the effective of the proposed method.

Keywords