Abstract
Electrical resistivity and piezoelectric properties were investigated in Lead Zirconate-Titante(PZT) with Nb$_2$O$\sub$5/dopant, fabricated from conventional mixed-oxide powders and molten salt synthesis. The resistivity and electromechanical coupling factor(K$\sub$p/) were increased with increasing Nb content. The reason for increasing of the electrical resistivity below the Curie Temperature(TC). It is believed that the Curie Temperature(Tc). It is believed that the p-type electrical conduction in PZT is due to lead vacancies. The electromechanical coupling factor(K$\sub$p/) and piezoelectric constant d$\sub$33/ were improved. This behavior can be explained as a compensation effect and Nb$\^$5+/ can serve as a donar and contribute electrons to the conduction process. As a result, the optimized Nb$_2$O$\sub$5/ dopants on the PZT specimens were 0.75 wt%.