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ABSTRACT

Across languages there are certain characteristics which they share. Linguists, trying
to explain language universals, have come up with different theories: They argue for
(1) the innatedness of general linguistic principles, (2) the communicative functions
reflected in linguisitic structure, (3) the psychological demands placed upon language
users, or (4) grammar-internal explanations. This paper tries to explain some of the
morphological universals in the framework of a connectionist network, supporting
the third approach. Employing simple recurrent networks, a series of experiments
were done on various types of morphological rules. The results show that the model’s
performance mirrors the extent to which the different types of rules occur in natural
languages. The paper explains how the model has discovered these universals.

1 INTRODUCTION

The study of language universals has been a major focus of modern linguistics for at
least the past three decades. Why do languages share the universal properties that they do?
Why do languages exhibit the range of variation that they do? Why are certain logically
possible properties not found in any human languages? In attempting to answer these
questions, it appears that linguists can be grouped according to four different theories, as
explained by Hawkins (1988):

Some argue for the innatedness of general linguistic principles housed within

a language acquisition device (LAD) which enables the new-born child to ac-

quire the particular language of his/her community with remarkable speed

and despite impoverished input. Others argue for a more social, rather than a

biological, foundation to language: the communicative (discourse-pragmatic)

functions that language users perform are reflected in linguistic structure. Yet

others appeal to the psychological demands placed upon language users in

the production and comprehension of language in real time. These so-called

‘processing’ demands are also argued to be reflected in its structure, as are

certain intrinsic properties of our human perceptual and cognitive apparatus.

Finally, there are more grammar-internal explanations, whereby one part of

the grammar is claimed to be explained by another, for reasons essentially of

internal consistency. (p. 3)
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This paper tries to explain some of the morphological universals in the framework of
a connectionist model. My approach in this paper is one that is based on the demands of
learnability and processing (third approach from the above quote).

Connectionism {Rumelhart and McClelland. 1986; McClelland and Rumelhart, 1986)
is an approach to cognitive modeling which assumes that knowledge is represented by
weighted connections spreading activations over large numbers of densely interconnected
units. A network consists of input units, which respond to stimuli from the outside world,
and output units, which represent the system’s response to that input. There may be one
or more “hidden” units. Fach unit has an activation value. It is updated by multiplying
each incoming signal by the connection weight along which it is received, summing these
inputs, and passing them through some function, thus obtaining a new value. Processing
involves activating input units; this activation spread through connections to produce a pat-
tern of activations on the output level. This pattern is compared to “desired” output and
the discrepancy is back propagated to adjust the weights. !

Employing simple recurrent networks, a series of experiments were done on various
types of morphological rules. The results show that the model’s performance mirrors the
extent to which the different types of rules occur in natural languages. The paper explains
how the model has discovered these universals.

2 EXPERIMENTS
2.1 Method

I use a relatively constrained three-layer network, one in which feedforward con-
nections are supplemented by limited feedback connections. Figure 1 shows the network
architecture used for the experiments.

The architecture shown in Figure 1 is a slight modification of the simple recurrent
network developed by Elman (Elman, 1990). Since morphological processes are temporal,
we need to have some kind of short-term memory to store the previous events. The feedback
connections from the hidden layer to the input layer serve this purpose.

The Form clique in the input and output layers consists of 8 units representing a
phonological segment. Each Meaning clique consists of 7 units, 6 of which represent a stem
meaning and 1 of which represents a grammatical feature of the input word (0 for the absence
of that feature, e.g. singular, 1 for the presence of the feature, e.g. plural). The network
has a variable number of hidden units and an equal number of Context units. ¢ Each of the
first two cliques receives input from the outside, while the Context units receive a copy of
the activations on the hidden layer from the previous time step. The hidden units receive
activations from the input layer, feeding the output layer. In addition, the activations on the
hidden layer are fed back to the Context units. The output layer receives activations from
the hidden layer. The output layer produces outputs in accordance with the current fofm
and meaning and predicts the next input form. Given the current form and meaning, the
network is trained to replicate them on one part of the output layer (autoassociation) and
to predict what comes next in the sequence (prediction). My concern is with the arbitrary
relationship between form and meaning; hence we need not concern ourselves in this paper
with genuine semantics. The solid arrows denote the learnable one-to-many connections
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Figure 1: Architecture of the network

from the units on the lower levels to those on the higher levels. For example, any given unit
on the input layer connects to all the on the hidden layer. The dashed arrow denotes the
fixed one-to-one connections, on which no learning takes place with only one connection from
a given higher level unit to a single lower level unit. There are no intra-level connections
in the units in any clique or between cliques. The standard back-propagation learning rule
(Rumelhart et al., 1986) is used to train the network.

This network has the capacity to associate form with meaning as well as form with
form and meaning with meaning. Thus it can perform the task of the production of a
sequence of segments given a meaning.

The results indicate that the network like this is capable of learning various types of
morphological rules. That is, given training on the singular, but not the plural of tone, the
network was later able to generate the appropriate plural suflix following the stem.

For example, the network was trained on pairs like the following:

(1) ZONE + SINGULAR --> /zon/
(2) ZONES + PLURAL --> [zonz/
(3) TONE + SINGULAR --> /ton/

and then it was tested on pairs like the following to sce if it then yielded correct phonological
forms:

(4) TONE + PLURAL --> /ton/ + 77,

where the items in capitals represent meanings.

Input words were composed of sequences of segments. Each segment consisted of a
binary vector which represents modified Chomsky-Halle phonetic features (Chomsky and
Halle, 1968): 1 for the presence of a particular feature and 0 for its absence, as shown in
Figure 2. Each segment type was uniquely specified as a binary vector of 8 features.

There were 20 words for each simulation. Ten sets of randomly generated artificial
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features 8
vocalic high back anterior coronal voice strident round

classification 16

; pepper lip
; baby rib

; tie attack
; did adder

; cook ache

; go big

; fifty cuff
; vivid give
; source less
; zone raise
; each free

; made

; father cart
; ooze too

; bone know

; word~boundary-marker
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Figure 2: Phonemes represented as binary vectors according to the feature matrix similar to
that of Chomsky-Halle.

words were used for each experiment. Twelve of these were designated “training” words, 8
“test” words. For each of these basic words, there was an associated inflected form. For
convenience, I will refer to the uninflected form as the “singular” and the inflected form as
the “plural” of the word in question. The network was trained on both singular and plural
forms of the training words and only on the singular forms of the test words. Words were
presented one segment at a time. The network was trained on the auto-association and
prediction task. It was tested if it then yielded correct morphological forms.

To test the network’s performance on the production task, I gave the network the
appropriate segments for the stem successively, along with the meaning of that stem and the
number unit on for plural. I then examined the prediction output units at the point where
the plural morpheme should appear. Based on Euclidean distance, each output pattern was
converted to the nearest phoneme.

2.2 Results

To test the effectiveness of the model for the learning of morphological rules, a set of
experiments were conducted employing the following 7 rules:
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Table 1: Results of morphological process experiments. "% Segments Correct” refers to
the percentage of all the segments which the network predicted correctly, while "% Affixes
Correct” refers to the percentage of correctly predicted affixes.

% Segments Correct | % Affixes Correct

Suffix 82.3 82.5

Prefix 62.0 76.3

Infix 73.5 42.5
Pre-del 12.5 -
Mid-del 23.8 -
Post-del 57.5 -
Reversal 22.5 -

1. suffix (+ assimilation): fik ~> fiks, gob -> gobz
2. prefix (+ assimilation): fik -> sfik, gob -> zgob
3. infix (gemination): ipa -> ippa

4. initial deletion: fik ~> ik

5. medial deletion: ippa -> ipa

6. final deletion: fik -> fi

7. reversal: £ik -> kif

The network succeeded on rule types which are common in human languages and
failed on those which are rare or non-existent. Types 1 and 2 are common, types 3-6 less
common, and type 7 non-existent. The results are summarized in Table 1.

3 DISCOVERY OF UNIVERSALS

The model shows clear evidence of having learned morphological rules. The degree of
mastery of the rules mirrors the extent to which the different types of rules occur in-natural
languages. In this section, [ will explain how the model has discovered some universals.

3.1 Affixation and Deletion

The network performed much better on the affixation tasks than on the deletion
tasks. The reason might be that for the affixation tasks, the model had to predict the
segment following the current phoneme, while for the deletion cases its task was to predict
the phoneme that would come after the next one if it were not deleted. For the latter task,
there is a gap between the current phoneme and the one that is to be predicted, making it
more difficult for the network to predict the correct segment. Consider the following three
cases:



(1 /tap/ + /#/ and /tap/ + /s/
(2) /tam/ + /#/ and /tam/ + /z/
(3 /tap/ + /#/ and /ta/ + /#/

Problems (1) and (2) are somewhat easy, as in each case the identity of the last phoneme
depends on the penultimate phoneme. The different contexts created by the penultimate
phoneme are sufficient to ensure that different predictions can be made for the last phoneme.
However, for (3), the final phoneme, that is, the word boundary, comes after the final
phoneme in the stem for the singular case, while it comes after the second phoneme for
the plural case. To predict the word boundary correctly in both cases, the network must
develop different internal representations relative to the second phoneme for each case. (In-
deed, the hidden unit activations have to be different if different outputs are to be produced.)
Only in this way can the network generate the correct final phoneme (and in the next time
step the word boundary) for the singular case and simply the word boundary for the plural
case. Since the prediction tasks are the same for both cases up to the second phoneme, the
network tends to develop the same hidden representations. This “homogenizing” process
seems to strongly hinder learning in deletion tasks. Servan-Schreiber et al. (1988) report
similar findings in their study on learning two arbitrary sequences of the same length and
ending in two different letters such as:

PSSS P and TSSS T
They report:

... the predictions in each sequence are identical up to the last letter. As sim-
ilar outputs are required on each time step, the weight adjustment procedure
pushes the network into developing identical internal representations at each
time step and for the two sequences — therefore going in the opposite direction
than is required. (p. 29)

The very nature of the back-propagation learning rule and the structure of the model
enable correct prediction of the affixed phonemes but make difficult the prediction of the
segments after a phoneme is deleted. This is one explanation for the universal tendency of
natural languages to exhibit many affixation processes, but few deletion processes.

3.2 Affixation and Assimilation

The network was able to generate the appropriate forms even in the prefix case when
a “right-to-left” (anticipatory) rule was involved. That is, the fact that the network was
trained only on prediction did not limit its performance to left-to-right (perseverative) rules
since it had access to a static “meaning”, permitting it to “look-ahead” to the relevant
feature on the phoneme following the prefix. What makes this interesting is the fact that the
meaning patterns bear no relation to the phonology of the stems. The connections between
the stem meaning input units and the hidden layer units were being trained to encode the
voicing feature even when, in the case of the test words, this was never required during
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training. For example, consider the following training set of artificial data.

(4) FIK® + SINGULAR --> /fik/
(5) FIK + PLURAL --> [sfik/
(6) KOB + SINGULAR --> /kob/

When the network predicted the prefix of the word “KOB” for plural,
(7) KOB + PLURAL --> 77 + /kob/,

it had available to it the characteristics of the first phoneme in the stem: among them notably
the voicing feature. The meaning “KOB” has /k/ associated with it as its first segment.
Thus the network knows that it has to produce /s/, since the grammatical feature unit is on
and /k/ is voiceless.

In any case, it is clear that right-to-left assimilation in a network such as this is more
difficult to acquire than left-to-right assimilation, all else being equal. Cross-linguistic studies
of morphology have revealed an asymimetry in the frequency of affixing processes in favor of
suffixing over prefixing (Hawkins, 1988), meaning that there are at least fewer opportunities
for the right-to-left process. * I am unaware of any concrete evidence that would support
left-to-right assimilation as easier than right-to-left assimilation, though in trying to explain
the asymmetry between the processes Hawkins and Cutler (1988) argue that:

... the linguistic and psycholinguistic evidence together suggest that language
structure reflects the preference of language users to process stems before af-
fixes, in that the component preferred for prior processing receives the most
salient (initial) position in the word, the component to be processes second a
less salient position. That is, the suflixing preference results in stems gener-
ally being ordered before affixes because language users prefer to process stems
before affixes. (p. 311)

Whatever reason there might be, it is very encouraging to see that the model performs
in a way that mirrors human language: suffixation is more frequent across languages than
prefixing, and both are considerably more frequent than infixing.

3.3 Reversal

What is it that makes the reversal rule, apparently difficult for human language
learners, so difficult for the network? Some aspects of the rule were learned. In 49% of the
cases the network produced a CVC syllable as the plural form. What it could not do was to
predict the correct consonants for the past tense.

Consider what happens in the suffix or prefix cases. The input consists of the sequence
of phonemes representing the stem of a word, together with the stem meaning seen during
training and the plural, not seen in this combination during training. Given a novel set of
patterns, the network treats it as a combination of two sorts of patterns it has seen before:
one of which is a sequence of phonemes representing the stem of a word, excluding the affix,
along with the stem meaning; the other of which is the plural input, along with the feature
of the segment that determines the appropriate plural form. The relevant phonetic feature
is readily available in the suflix case as a part of the input. In the prefix case, as argued in
the previous subsection, it is available as an acquired property of the stem meaning.
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For the reversal case, if we think of the novel item in the form of a set rather than a
sequence, then exactly the same set of segments is used for both singular and plural words.
More importantly, however, since the network’s task is to predict the next segment, there can
be no sharing at all between the singular and plural forms in terms of prediction. Patterns
on the hidden layer develop in response to prediction, so we should expect little similarity
between context inputs for singular and plural words. As a result, the network does not
have much material available for interpreting the novel reversed words. Presented with the
novel plural form, it is more likely to respond based on similarity with a word containing a
similar sequence of phonemes (e.g., gip and gif) than respond with the correct mirror-image
sequence.

4 CONCLUSION

In this paper, some of the morphological universals were explained in the framework
of a connectionist network. I do not believe that the work described in this paper necessarily
makes strong claims that human perceptual processes are learned by the model used here (the
model might not be the right one after all), but it gives an example of the kind of contribution
connectionism can make to the search for language universals and their explanation.

NOTES

1 This is only one example of learning algorithms. For more information on various
learning procedures, see (Hinton, 1989).

2 The size of hidden layer was decided empirically, that is, pilot run was done for
cach experiment, and the network which gave the best performance was chosen.

3 The items in capitals represent meanings. Since the word is a made-up one, stem
meaning is arbitrary.

4 Of course, this does not necessarily mean that left-to-right rules are more common
than right-to-left rules. In fact, right-to-left stress rules are more common than left-to-right
ones.
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