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Abstract

In this paper we present another solution the so-called proportion problem of donkey
sentence based on the interpretation of an indefinite description, or existentially quantified
term, as Hilbert’s epsilon-term, a logical device invented for proof-theoretical consistency
proof. Semantically, an epsilon-term can be thought of as representing an arbitrary cbject
in the sense of Kit Fine (1985) and may be related to the non-existent individual { Ausser-
sein) of Meinong. In our theory, an anaphoric pronoun is treated as a demonstrative term,
as proposed by David Kaplan (1979) in his study on the logic of demonstratives.

Our solution to the proportion problem is more satisfactory in that it is general and
seems to capture the intuition behind our use of quantification and anaphora. In pre-
senting our theory with the epsilon-term, we stress the importance of dynamic aspects in
interpretation in general and quantification in particular. A theory of semantic representa-
tion is suggested that emphasizes not only on denotational but also on the deductive and
procedural side of meaning.

1 DRT and Proportion Problem
In Kamp’s Discourse Representation Theory (DRT), the famous donkey sentence:
(1) Every farmer who owns a donkey beats it

is given the following Discourse Representation Structure:

Every farmer who owns a donkey beats it

[ {uv) 1
farmer(u) i)
u owns a donkey u beats it
donkey(v) u beats v
u owns v

According to DRT’s definition of semmantic interpretation, the universal sentence “every
@, %" is satisfied by any assignment f in the model M, given the DRS’s A and K’ for ¢ and v
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respectively, if and only if A and K’ are such that [N |p C |N{a N JK|ar. In other words,

leverylm = {(K, K')IKIa € 1K |ar}-
If we define:
e K = {farmer(u),u owns v,donkey(v)}
e K’ = {u beats v}

then the condition above is clearly equivalent to the truth-condition of the following formula in
first-order logic:

(V2)(Vy)[(farmer(z) A donkey(y) A own(z,y)) D (beat(z,y))]

This analysis of the donkey sentence is intuitively correct. But is this way of analysis correct
in pranciple, or does it just happen to be correct? We will see one possible problem which may
beset DRT in principle.

1.1 Proportion problem

The proportion problem is a problem that arises when one extends the original vocabulary of
DRT to a language containing a generalized quantifier “most”. This problem is concerned with
the following variant of the donkey sentence:

(2) Most farmers who own a donkey beat it

Presumably, DRT would give the following DRS for (2):

Most farmers who own a donkey beat it

{u v} |

farmer (u) U

u own a donkey u beat it
donkey(v) u beat v
u own v

Following the standard treatment, one can define the truth-condition of the quantifier most in
DRT as follows:

2]

Giiven the sentence “Most ¢ ¥” and DRS’s K and K’ for ¢ and ¢ respectively, the
satisfaction condition in model M for this sentence is

T (K, K'Y € Jmost|ps <= [N |ar O |K far| > 1K |ar — §K [ael.
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The notation 4| means the cardinality of the set A. This satisfaction condition says, in effect,
that the sentence “most ¢, ¢"” is true in M, given K and K’ if and only if the cardinality of the
set of assignments that satisfy both K and K’ is larger than that of the set of assignments that
satisfy A" but not K. Although this condition may not exactly be what our intuition would
have for a most-sentence, it does capture the lower-bound of a condition that has to be satisfied
by any Mosi-sentence.

Against the backdrop of this truth-condition, Mats Rooth (1987) defines the following model:
Let My be (Upy,, F,) such that Uy, = {john,ay, ... age,dy,d2,. .., d1ogs};
Fap,(farmer) = {john, a,, ..., a9 };
Fpry(donkey) = {dy,da,. .., d1ges};
F]p[O(OWll) = {(john,dl), ey (_].Ohn,dlgo(»7 ((11, d1001>, ey (agg, d1099>}',
Fug(beat) = {{john,dy), ..., (john,digo)}. In this model, there are 100 farmers: John and
99 others. John owns 1000 donkeys and beats every one of them. Each of the other farmers
owns exactly one donkey, and none of theni beats his donkey. The question is whether the
interpretive mechanisin of DRT, given the truth-condition of most and the DRS above, can give
the truth-value false to this sentence.

The satisfaction condition for Most gives the following condition for the DRS’s of (2).

(K. K') € Jmost]ar, <= N aro VI Intg ] > 11 Iage = 1K Iago ],

where K = {farmer(u),u own v,donkey(v)}, and A’ = {u beat v}.

The satisfaction set of the antecedent DRS K, | A |5, = |{farmer(u),u owns v, donkey(v) }as,
is the set {g]g € Jarmer(u)|ar, N Ju owns viar, N Jdonkey(v)ar,}. This set, in turn, is com-
posed of those assignments g such that ¢ € Jfarmer(u)ja, and g € ju owns vy, and g €
[donkey(v)fas,. This means that these are assignments g that satisfy g(u) € Fyy, (farmer),
g(v) € Far{donkey), and (g(u), g(v)) € Far,(own).

In order to evaluate the whole DRS, we have also to have the satisfaction set for the con-
sequent DRS, namely A = {ubeat v}. [N, is the set {glg € [uowns v]a,}, which is
composed of assignments g such that {(g(u),g(v)) € Fay,(beat).

Since Upy, = {john, ay, ... age,d),da, ... diges}, there are 1099 assignments, namely
gi - U UUp w— Upg, under the interpretation Fay,. The first 1000 assignments g1,..., g1000
give the same value john to the reference marker u, but they differ from each other in the
value they assign to v. Notice that all of these 1099 assignments satisfy the conditions in
K so that it is the case |K{a, = {91,...,91000}. On the other hand, only the assignments
that assign john to u, namely ¢1,...,g1000, satisfy the condition in K’. So the satisfaction set
for the latter DRS is {K'{ar, = {91.....g1000}. The intersection of these two sets is | K |p, N
[K'[ae = {91, 91000}, which 1s the set of assignments that satisfy both the antecedent and
the consequent of the sentence (2). The cardinality, therefore, of the set of assignments that
satisfy both the antecedent and the consequent of (2) is

IR ar, MK far, | = 1000.

The cardinality of the set of assignments that satisfy the antecedent but not the consequent is,
on the other hand,

WA age — IR |nao| = 99.
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Obviously it is the case 1000 > 99, so, according to the clause 7 above, we can conclude
(K, K') € lmost|a,.

Thus, in DRT, sentence (2) 1s true in the model My.

Intuitively, however, this result i1s strange. There is only one farmer that beats his donkeys,
while 99 farmers do not beat theirs. If there are 99 farmers each of whom does not beat his
donkey and there 1s only one farmer who does his, our intuition decrees that it not be the
case that most farmers who beat their donkeys. Thus the DRT gives rise to a counter-intuitive
result.

2 Hilbert’s Epsilon-term as Description

In this section, we introduce David Hilbert’s e-term. Hilbert’s e-operator! is a term forming
operator 1n the sense that if ¢(x) is a formula with x free then ex.¢(x) is a term. We call such
a term an e-term. Proof-theoretically, an e-terin is coustrained by the following e-aziom:

d(ex.¢(z))

That is, if one can prove that there is some ¢ then one can also show that the object which has
been shown to be ¢ is indeed ¢. In a more semantics-oriented mauner, one can characterize the
e-term in terms of the following rule:

b 3z.9(z)

Dex.d(x),

which says, intuitively, that if one has shown that there 1s something that satisfies ¢ then the
e-term ex.¢(x) is indeed, semantically, well-defined.
Hilbert himself explains the informal interpretation of e-terms in the following manner?:

o If a proposition ¢ holds of one and only one object, then ex.¢(z) 1s the object of
which ¢(a) holds: 1.e. e-operator plays the role similar to the (-operator.

e When there are more than one thing that ¢ is true of, then € takes on the role of
the choice function; ex.¢{x) is any one of the objects a of which ¢(a) holds.

e When dz.¢(z) does not hold, then € chooses arbitrarily anything, any object
whatsoever.

Notice the arbitrary character of an e-term. This 1s why Hilbert’s e-calculus is closely related
to some non-standard semantics based on arbitrary or non-existent { Aussersein) objerftss.'

We can formalize Hilbert’s informal ideas in the following model theory for e-calculus. We
define? a {standard) model structure for (a calculus based on) the e-term as a triple (D, I, ®),
where D is the domain, or the universe, of the model and the I the interpretation of basic
expressions; thus the pair (D, I} may be taken as an ordinary model structure for the first-order
language. x is a set of choice functions, the component which we need in order to interpret



e-terms. More fornmally, \ 1s a set of choice functions on D such that if f € ® then f(N)€e N
for any non-empty N C D, and, if N = @, f(#) is an arbitrary member d € D.

We can then give the denotation [a %, of an expression a, of our formal language, in the
model M under the assignment 6 to the variables, if any, in a. For expressions other than the
e-term, our semantics is standard. The only semantic clause worth mentioning here is the one
for an e-term itself, which is:

lez.61% = f({d € D|[¢]% = True}), for f € x.

That is, an e-term is interpreted as a choice function which gives back as value an object
which satisfies the condition of the term, if there is such, or an arbitrary object. Notice that
this definition reflects not only the fact that an e-term is a CHOICE-FUNCTION but also the
requirement that its denotation be an arbitrarily chosen object.

2.1 Introducing Generalized Quantifier

In order to treat sentences such as (2), we have to extend the original language of e-calculus to
contain quantifier Most in addition to ¥V and 3. Following the standard definition, as has been
done in section 1.1, we assign the following truth-condition to the quantifier most:

[(Most :2)(6,v) I3y = HiMost (. 1. p) = True <= m > n,

where
m = i i

{d € DIf8 1% = True} N {d € DI % = True}],
n =

[{d € D|[¢]5s = True} N {d € D|[-¢ 13 = True}|.
Although the definition above looks a little different from the one given in section 1.1, it
gives the same result. For example, if we are given a sentence

(3) Most men run.

Suppose we translate (3) to:

(Most :z)(man(z), run{x)).
Then, according to the definition above, [(Most : )(man( , run( )]]M True if and only if
m = [{d € DH[man ]M True} N {d € D|frun( :r)]]M = True}| is larger than n = |{d €
D|[man(z ]]M = True}ﬂ {d € D|{~run(z ]M = True}|, which is |{d € D|[man(z ]]M = True} —

{d € Dl|run(x ]]M = True}|. Thus. as far as the interpretation of the sentence (2) is concerned,
our Most must be as sufficient as |most|.

2.2 Pronoun as a demonstrative term.

In order to treat anaphoric pronouns, we introduce the concept of pro-terms. We represent
pro-terms as {he, she, it, eic}. Pro-terms are terms like names, but their semantic function
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is slightly different. The chief business of a pro-term is to stand for another name. Thus a
pro-term is semantically similar to a variable.

We would like to think of a pro-ternm as an analog of what David Kaplan calls a demonstrative®:
a term used to point to an object. Jusl as a demonstrative must be accompanied by an act
of demonstration, a pro-term must be specified in place of what it is used by a sort of demon-
stration. Usually such demonstration is provided by an act of pointing that accompanies an
utterance of a pro-term, or by an act of simply intending an object.

As far as our formal treatment is concerned, such demonstration can be modeled by a
function that sends a pro-term to its intended object or a name. We call this demonstrating
function simply Dem. We think of this Dem function (in a discourse) as a function that maps
a pro-term to an object purported to be in the discourse. Those objects that comprise the
range of the Dem function are the objects that are claimed to be well-defined in the contexts.
Let us call these personae dramatis of a discourse. These function in the similar manner to
the way discourse referents in DRT. But more specifically, we think of these personae dramatis
as e-terms, introduced into the context by specific instances of the e-axiom. If, for example,
in discourse 6, the personae dramatis are defined as {a, 3,7}, the Dem function may send
pro-terms {he;, hes, it} in such a way that Dem(hey) = o, Dem(hey) = 3, and Dem(it) = 7.
But it may turn out, in the interpretation of the discourse, the personae dramatis v and 3 are
referring to the one and same object. In such a case, the pro-terms hey and he» can be called
co-referential in the traditional sense.

3 Epsilon-term Analysis of the Proportion Problem

The procedure which translates (2) to a formula e-calculus 1s similar to a proof-procedure n
logic or calculation in Montague Gramumar, and can also be regarded as an impoverished version
of the DRS construction algorithm in DRT.

Given sentence (2), the procedure first declares the type of the individual, whatever it is,
that is to be designated by the noun phrase maost farmers. This is represented as “x : [Most]”.
In the context in which the variable r is of type Most, the rest of the sentence 1s translated. the
(pseudo-) noun phrase farmers who own a donkey is translated in the standard way, namely:
{farmer(z) A (Jy)[own(z, y) Adonkey{y)}. The verb phrase beat it is translated as a formula that
contains a pro-term it: (beat(z,it)).

1. z : [Most]
2. [{(farmer(z) A (3y){own(z,y) A donkey(y)), (beat(z,it))]
According to the e-axiom, an e-term 1s introduced in the following manner:

(3y)[own(, ) A donkey(y)]
B (ey)[own(x,y) A donkey(y)]

We could abbreviate this e-term thus: o = (ey){own(x,y) A donkey(y)]. So the result of the
procedure so far would be as follows:
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3. [(farmer(x) A own(z, &) A donkey(a)), (beat(z, it))].

This formula is not yet in a proper form for it still contains the pro-term it, and we need to
eliminate 1t. Since « is the only persona dramatis introduced in the sentence, it is natural to
define the Dem function to be such that Dem(it, «r). The result is:

4. [(farmer(x) A own(z, o) A donkey(«)), (beat(z, «))].
Finally, the context of variable type is resolved, giving:
(4) (Most : z)[farmer(z) A own(z, &) A donkey(a), beat(z, )],

where a = (ey)[own(z,y) A donkey(y)]. This last result is the translation of (2) within our
theory of e-terms.

Now the real problem of proportion; is (4) true or false in the model we presented in section
1.17

In order to compute the value of

[(Most : z)[farmer(z) A own(z, a) A donkey(a), beat(z, a ]]]M0
we need to calculate the cardinalities of the set
{u € Dp,|[farmer(z) A own(z,a) A donkey(«) ]]i;o = True}

and the set .
{u € Dy, |[beat(z,a) J 47, = True}.

For this, in turn, we have to know the value of
[farmer(z) A own(z, ) A donkey(a Ill‘lo

and
[beat(x, o) ]%, -

Now, in order to know the values of [farmer(z) A own(z, o) A donkey(«a ]]M we first have to
know the value of the e-term o := (ey){own(z, y) A donkey(y)].

The value of [(ey)own(z,y) A donkey(y)]]]ﬁo is the value of the choice function f taking

ey
as argument the set {d € Dy, |[own(z,y) A donkey(y) ],; “‘d = True}. Hence we have to know

g=y
what constitutes this latter set. The interpretation [own z,y) A donkey(y) ]]M"' has the value
%y a
true iff both fown(x,y)],;" = True and [donkey(y ) = True. And Jown(z, y)]]A = True

T (07%( a(2), zﬁ( ) € IMO(own) while |[donkey(y)] v = True iff 6 g(y) € Ipr,(donkey). That
is, in a more informal notation, (u,d) € IMo(own) and d € IMo(donkey) What constitutes

the set {d € Dps,lfown(z,y) A donkey(y) ]]M = True} varies according as to what exactly our
meta-variable u is.



If the value is actually j, that is 0% (x) = j, then the set {d|[own(j,y) A donkey(y)]fé0 =
True} is composed of those individuals d in D such that d € I, (donkey) and {j,d) € Ips,(own).
Since (j,d1), ..., (j,d1o00), € Im,(own), we see that

{d € D, |lown(5,y) A donkey(y)]]f‘f}o = True} = {dy,...,di000}-

If, on the other hand, u is actually a;, that is 8] ¥(z) = a,, then the set {d € Dy |[own(a;,y) A
u.d [

donkey(y)][f‘,';o = True} is composed of those individuals d € Dy, such that d € [py,(donkey)
and {(a;,d) € [p1,{own). We l\now that (a;,dygo1) is the only pair that satisfies this. Hence {d €

Dy, lfown{ay,y) A donkey( y)]]M = True} = {dig01}. Similarly for other a; € Ip,(farmer). In

.y
sum, for each u € Dy, there are 100 different values of {d € Dz, |fown(z,y) Adonkey(y) ?Vfo =
True}.

Now let us compute the value of the e-term (ey){own(z, y) A donkey(y)]. Recall that in our
Interpretation:

l‘;y

[(ey)own(z, y) A donkey(y) H]Mo = f({d € D, |lown(z,y) A donkey(y) ], “ed _ = True})

of the choice function f € x. Since the argument of this function is dependent on the specific
value u of the variable r, the exact denotation of this e-term is also dependent on the value of r.

For ay,...,agy € Dy, the computation is simple, since the extensions of {d € Dy, [fown(z, y) A
gt y
donkey(y ]]M = True} for these individuals are unit sets.

The case 1n which 87%(2) = j € Dag, is where the choice-function aspect of e-terms comes

in. There are 1000 members in the set {d € D|[own(j,y) A donke:y(y)]](;‘;‘J = True}, namely
{dy,...,diooo}- The choice-function f arbitrarily selects exactly one member from this set; the
value could be dysg or d7y3 or dj. We know that there is exactly one member that answers to
this function but do not know which. Since it does not matter which one these 1000 individuals
the choice-function f selects, we can just name it dg; dg 1s the meta-variable for the individual
that f arbitrarily selects from {d,, ..., djp00}. Hence

s for j,
F({d € Dlfown(J, y) A donkey(y) 1%, = True}) = duy

This is an interesting result, because, although Iy, (own) consists of 1099 pairs, namely

{{j.d1), ..., {4, drooo), (a1, droor ), . . ., {@oy, dy0es) }, as far as the extension, so to speak, of the
whole antecedent farmers who own a donkey is concerned, there are only 100:
{ (4, da),{a1,d1001), (a2, d1002), - . ., {@a0,d1099) }. So the set of values for z that are in this ex-

tension is now known to be:
{u € D |[farmer(z) Aown(z,a) A donkey(a)]]fé0 = True} = {j,a1, ..., aw}.

The “extension” of the consequent phrase beat it can be considered in the similar manner to
that of the antecedent phrase farmers who own a donkey. Although all 1000 of {j,d\), ..., {J, d1ooo)



are in a7 (beat), the phrase beat of can be interpreted as containing only (j,dg), because the
phrase is

[beat(x, (ey)[own(z, y) A donkey(y)]) ]16\;.,'

This is satisfied by those assignments '(x) = j and the value of [{ey)[own(z, y)Adonkey(y)]]lﬁ}g
at j is dg. The set of the individuals that are the values of z and satisfy this condition is,

therefore, the set {u € DMOHIbeat(z,a)]]ﬁo = True} = {j}.
Now the truth definition clause for the generalized quantifier Most tells us that:

[(Most : z)(¢,v) % = BMost(m, n,p) = True <= m > n,

where
e m=|{d€ D|[¢]% = True} N {d € D|[%]5 = True}|, and
o n=|{de D|[o]} = True} N {d € D[~ ]} = True}].
Let

o &= {dé& Dyyl|ffarmer(z) Aown(z,a) A donkey(a')]]fv‘i0 = True} and

e W={de /)A,/O|]Ibeat(.r‘u)]]7‘§o = True}.

Then W' = {d € Dy, |[-~beat(x,a)]35 = True} = {d € Dyy,|[beat(z.a)]% = False}. And
therefore we have:

m=1oN¥ = [{j,a1,....ae} N {7} = {7} = True

n=|0NV¥|=|®—- V| =|{j,a.. ., as}— {j} = [{a1,. .., ase}| = 99

Thus m = True and n = 99 in the model My. Since pppop(m,n,p) = True <= m > n and
clearly 1 # 99. Thus

EMost (.1, p) = 0.

The sentence (2) is clearly false in the model Ay with respect to our e-term analysis.

3.1 Remarks and Conclusion

We notice that there are a few things that clearly distinguish our e-term analysis from DRT.
These are:

1. Quantification is over individuals.

2. The value of a donkey gives us just one individual which is chosen arbitrarily from the
extension of donkey. This individual plays the role of the representative donkey that is
the denotation of the indefinite noun phrase a donkey.



3. The dependence of “a donkey” on “a farmer” which i1s expressed by the phrase who owns
a donkey is interpreted by means of a function that depends on the denotation of farmer.

The first point is in contrast with the quantification over assignments of DRT. The second
point shows a sharp contrast between our interpretation of indefinite noun phrases and that of
DRT. The third point is what is completely missed in DRT. These last two points are extremely
important and are what make a difference in the treatiment of the donkey sentence containing
most.

To make these points more conspicuous and concrete, let us reexamine our treatment of the
problematic sentence (2).

The truth value of the interpretation of (2):

[(Most : z)[farmer(a) A own(z, @) A donkey(a), beat(z, a)]]]f”o,
where a = (ey)[own(z,y) A donkey(y)], is dependent on the cardinalities of the set

{u € Dp,|[farmer(z) A own(z, o) A donkey(a)]]i}o = True}

and the set )
{u € Dy, |[beat(z, a)]]i;o = True}.

This shows that our interpretation of the quantifier most is not taken as a quantifier over
assignments but one over individuals.

One of the most important points in our treatment is the fact that the translation, so to
speak, of the noun phrase a donkey gives rise to the e-term:

(ey)own(z, y) A donkey(y)].

This can be seen, of course, from the fact that in the translation above a donkey corresponds
to the translation:
donkey((ey)lown(z, y) A donkey(y)])

This is in sharp contrast with the representation given in DRT where a donkey is simply
translated as:
donkey(v),
where v is simply a free variable.
The point of e-term is that although the set
v

{d € Dpyl[own{x, y) A donkey(y) ]]i}: = True}

of the donkeys that are owned by John is not a singleton set in My, the interpretation of this
e-term:

.
[(ey)[own(z,y) A donkey(y)] ]},
is a single individual. In other words, even though there are 1000 donkeys that satisfy the
formula:
own(z,y) A donkey(y)



when z is assigned to j, only one of them counts as the denotation of the e-term and hence of
the noun phrase a donkey as is translated as:

donkey((ey)[own(z,y) A donkey(y)]).

Any one of dj,...,d1oo0 can be the denotation of the e-term. Which one of the donkeys is
actually chosen is not important; what is important is that one such individual is chosen. This
is why we can think of the denotation of the e-term as the representative of the extension of
the noun phrase a donkey® Qur truth condition for the formula and the pro-term elimination
make it clear that if John beats this representative donkey, then he counts as a farmer who
beats a donkey he owns. This representative characteristic of the e-term is a consequence of
the e-axiom:
F Jze(z)
bex.g(x)
and its interpretation of an e-term in terms of a choice function that we gave at the end of
section 2. The reader may notice the ntuitive way our theory interprets the indefinite noun
phrase.
Notice also that the interpretation of the indefinite is not bound by a quantifier directly.
So it may be natural to ask the question: “How can the quantificational force of an indefinite
be derived, when such is needed?”” The answer to this question is directly related to the third
characteristic above of our analysis.
Notice that in the translation of the whole sentence (2) the e-term:

(ey)lown(z, y) A donkey(y)]

has the free-variable r, which is bound in turn by the quantifier (Most : z). So the interpretation:

[(ey)[own(z, y) A donkey(y)] 157,

of this term is not just an individual but, in fact, is a function that gives a value depending
on the assignment to the variable z; the denotation of the e-term is dependent on the value
of the assighment to the variable that stands for a farmer. Put informally, the representative
donkey is always chosen with respect to the farmer that owns the donkey. When we abbreviate
the e-term, we could use the more suggestive abbreviation that shows the dependence of the
e-term on the variable z. Namely, thus:

Ty
[farmer(r) A own(z, ap) A donkey(ay) 47"
Now this is an important point. Because of this dependence interpreted as a function, we can
give both the original donkey sentence and the problematic (2) the intuitively correct truth
conditions, even though there is only one quantifier that quantifies over individuals. In other
words, we would not need to consider a set of pairs such as:

r,y

{{u, d)|[farmer(z) A own(z, a) A donkey(a,) ]i;o" = True},



because our translation makes it clear that, for any u, d is chosen depending on u. Notice,
however, that even If we were to think of a set of pairs we would not be troubled by the
proportion problem any more than in the original treatment of (2) above. Not only is d chosen
depending on u in (u,d), it is also chosen arbitrarily as the representative.

One may notice in passing that the function-like dependence of the e-term on the universally
bound variable and the representative character of its interpretation can account for the non-
exhaustive reading of the original donkey sentence. Thanks to the dependence, our theory does
not have to resort to the quantification over pairs. The interpretation of the donkey sentence
which incorporates the representative individual cau then give a weaker truth-condition than
the one given by DRT. The DRT analyses, on the other hand, make 1t mandatory that the
donkey sentence be treated in such a way that the quantification is over the set of pairs of
assignments, forcing upon the interpretation the truth-condition in which the beat-relation is
exhaustive over the farmer-donkey pairs that satisfy the own-relation.

In sum, our theory has the following characteristics that give it the advantage over the other
theories.

a. For each farmer there is a donkey that depends on the denotation of the farmer.

b. If there is at least one donkey in the extension of donkey then any of the individuals in
the extension counts as the representative of the donkeys.

¢. The pronoun 15 substituted for the termi whose reference is this representative. In other
words, it refers to whatever individual is denoted by this representative.

As we have just seen, these characteristics are all important in the intuitive treatment of
the donkey sentence, especially in the form of (2).

The success with which DRT has treated the original donkey sentence seems to be rather
accidental and contingent upon the specific logical form, and interpretation, the donkey sentence
requires; the donkey sentence in its original form requires that the indefinite noun phrase be
interpreted as a universal quantifier, which is the traditional translation of the noun phrase with
every. Hence the two quantifiers that head the translated formula have the same quantificational
force: that of the universal quantifier. This fact does not interfere with the quantification over
pairs of assignments, since a universal quantifier binding a pair of variables (or assignments)
gives the same truth condition as two universal quantifiers on respective components of the
pair;

(Vz)(Vy)o(z,y) = (Vzy)o(z, v).

However, when the quantifiers have different quantificational force, as in the proportion problem,
such a treatment does not work and gives the wrong truth condition. This fact shows that DRT
lacks something essential in the treatment of the donkey sentence, something which is at the
heart of the problem. What is at the heart of the problem requires a treatment of anaphora and
reference that somehow incorporates the characteristics which the e-term analysis possesses, as
has been made clear with respect to our approach to the proportion problem.
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Notes

*1 would like to thank Dr. Beom-mo Kang of Korea University for his support. Without his
encouragements, this paper would never have seen the light of day.

'See Hilbert and Bernays (1939) and Leisenring (1969) for detail.

2Hilbert and Bernays (1939).

3See for example Fine (1985) and Chisholm (1960) for these ideas.

iDefinitions are basically as in Leisenring (1969).

5See Kaplan (1989), pp.489-490.

In this respect, we could even think of the e-term itself as a semantic object, which repre-
sents an arbitrary individual.



