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Abstract

The finite element technique incorporating infinite elements is applied to analyzing the general three
dimensional wave-structure interaction problems within the limits of linear wave theory. The hydrodynamic
forces are assumed to be inertially dominated, and viscous effects are neglected. In order to analyze the
corresponding boundary value problems efficiently, two types of elements are developed. One is the infinite
element for modeling the radiation condition at infinity, and the other is the fictitious bottom boundary
element for the case of deep water. To validate those elements, numerical analyses are performed for several
floating structures. Comparisons with the results from other available solution methods show that the present
method incorporating the infinite and the fictitious bottom boundary elements gives good results.

ing boundary integral solutions®!213, and (4) infinite
elementsl4-17, The methods (2) and (3) are commonly
The linear wave diffraction theory is commonly used referred as the hybrid element method (HEM) or the
to evaluate the hydrodynamic forces on large offshore localized finite element method (LFEM). The concept
structures. In general, there are two types of numer- of an infinite element has been adopted in this study.
ical solution techniques for the corresponding bound- Bettess and Zienkiewicz!4 firstly applied a two di-
ary value problems. They are the boundary integral mensional infinite element with exponential decay to
equation method (BIEM) and the finite element meth- the horizontal plane problems of surface waves. Later,
od (FEM). The boundary integral equation formula- Zienkiewicz et al!® presented a new infinite element
tions are more frequently adopted. However, the meth- with r-1/2 decay, which is also a horizontal two dimen-
ods fail at so—called critical or irregular frequencies!, sional element. It was reported that this clement gives
and are more difficult to be applied to the cases with more accurate results than the infinite element with ex-
complex structural geometries such as sharp corners. ponential decay and any boundary damper elements.
Therefore, the interest in the alternative approaches Lau and Ji'6 suggested a three dimensional 8-noded in-
based on the finite element method has been increased finite element using the first two terms of asymptotic
considerably. expansions of the progressive wave component in the

Application of the finite element method to the analytical boundary series solutions to construct the
evaluation of hydrodynamic forces on large offshore shape functions in the radial direction. It was shown
structures have been extensively reviewed by Mei2? and that the element gives satisfactory results for the fixed

1. Introduction

by Zienkiewicz et al.3. There are mainly four differ-
ent approaches which have been adopted in the fi-
nite element method to model the radiation condi-
tion at infinity. They are (1) boundary damper ap-
plied along the outer boundary at finite distance from
the submerged solid body of interest4$, (2) match-
ing analytical boundary series solutions®-12, (3) match-
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cases (i.e., diffraction problems), compared with those
by using the matching boundary series solutions. How-
ever, this element may be improper to the wave radia-
tion problems, since the element does not include the
effects of evanescent wave components (standing wave
components or local disturbance terms) which may be
significant. Recently, an axisymmetric infinite element
was developed by the present authors!?, which can be
applicable to the boundary value problems for the ver-
tical axisymmetric structures. The shape functions for
the element, in the radial direction, were derived from



the asymptotic expressions for the progressive wave
and the first evanescent wave components in the an-
alytical boundary series solutions. The efficiency and
validity of the element have been proved through the
example analyses for the various cases of the vertical
axisymmetric structures.

In this study, the axisymmetric infinite element de-
veloped in the previous study!7 is expanded to be ap-
plicable to the general three dimensional wave-structure
interaction problems. The fictitious bottom bound-
ary element is also introduced in order to analyze the
boundary value problems in deep water, efficiently. To
validate the infinite and the fictitious bottom boundary
elements, the numerical analysis is performed for sev-
eral cases of the floating structures. Comparisons with
the results obtained by other available solution meth-
ods show that the present method incorporating the
infinite and the fictitious bottom boundary elements
gives good results.

2. Governing equation and boundary conditions

In this study, a regular wave train of amplitude, (,,
and angular frequency, w, propagating in water of con-
stant depth, d, and passing a floating arbitrary shaped
body is considered, as shown in Figure 1. A Cartesian
coordinate system (z,y,2) with z measured vertically
upwards from the still water level is adopted. Also, a
cylindrical coordinate system (r, 8, z) is employed with
r measured radially from the z axis, and & from the
positive z axis. The fluid is assumed to be incompress-
ible and inviscid, and the flow is irrotational. The fluid
motion, therefore, can be described by a scalar veloc-
ity potential, ®(z,y, 2;t), which satisfies the Laplace
equation

Vie(z,y,2;t) = 0 (1)

The wave height is assumed to be sufficiently small
for linear wave theory to be applied. Consequently, ¢
is subjected to the usual boundary conditions at the
seabed(Sa), body surface(S}), and free surface(Sy) as
follows.

?)_f = 0 on Sy 2)
8% 2

% = w?@; on Sy (3)
g% = Vg on S, (4)

in which n = the outward unit normal to the body
surface, Sp; and V;, = the velocity of the body surface
itself in the direction normal to the surface; i.e., n.

A wave train will cause the body to oscillate in the
six modes corresponding to surge, sway, heave, roll,
pitch, and yaw as indicated in Figure 2, and denoted
here by subscripts 1, 2, 3, 4, 5, and 6, respectively.
Each mode of motion is assumed to be harmonic and
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Figure | Definition sketch

expressed in the form of £e™™* in which ¢ = time,
and §; = the corresponding complex valued amplitude.
Therefore, V,, is itself made up of surge, sway, heave,
roll, pitch, and yaw components, and is given as

8
Va = Rel} —iwn;&e™ ™ (5)

i=1
in which Re[:] denotes the real part of the argument, i
=+/-1,and
Ry = Ngpy N3 = Ny; 03 = Ny
neo= (y-yp)ne — (2 - z)ny; 6)
ns = (2= zg)ng—(z—z4)ns;
ng = (z-zg)ny —(v—yp)ne

and ng, ny, n; = the direction cosines of the outward
normal vector, 7, to the body surface with respect to
the z, y, and z directions, respectively; and z,,y,,2,
= the coordinates of the center of gravity of the body.
The velocity potential, &, is also harmonic and is
made up of components associated with the incident
wave(subscript 0), the diffracted waves(subscript 7),
and the radiated waves due to each motion(subscript
1,2,---,6). Then, & may be expressed in the usual

way as
L]

Rel(¢o + ¢7+ Y 856)e™)

=1

(M

in which the velocity potential, ¢;, is generally a com-

‘plex valued quantity. - The velocity potentials associ-

ated with the diffracted and radiated waves must sat-
isfy the Sommerfeld radiation condition at infinity?8.

£

€, = SURCE
&, = SWAY
€ = HEAVE
¢, = ROLL
€, = PITCH
‘. = YAW

Figure 2 Definition of body motions



lim \/-(—-——tko¢]) =0

Jim (8
in which kg = the wave number.

Substituting equations (5)-(6) into equation (4),
and separating out the terms corresponding to the
diffraction problem(j = 0,7) and those related to the
radiation problem(j = 1,2,---,6), the body surface
boundary condition can be expressed as

—iwn; forj=1,---,6
%= ¢l J [} (9)
o .
n —%?-ny—g?n, forj=7

in which @ is the incident wave potential given by

g('a cosh[ko(z + d)] etko(z cos Y4y siny)

w  cosh(ked) (10)

do =
and ¥ = the angle of wave attack measured from the
positive z-axis.

3. Functional

Solution for the boundary value problems mentioned in
the previous section may be obtained using the finite
element method (FEM). Using the calculus of varia-
tions, the solution to the problems described in equa-
tions (1)~(3), (8), and (9) can be taken as the po-
tential which minimizes the following functional corre-
sponding to the governing equation and the associated
boundary conditions:

I(4;)

/n -;-w;,- .V4; dO

3o (6as;
/S . %iko(¢,~)’d5,
/s ° %’L@ dss

in which Q, Sy, S, and S, denote the fluid domain, the
free surface taken along z = 0, the radiation boundary
surface at infinity, and the body surface, respectively.

To model the fluid domain efficiently, it is divided
into two regions: I, is the inner finite element region
surrounding the solid body with the outer cylindrical
boundary surface at finite distance, r,, from the ori-
gin, and §; is the infinite element region outside of
1, as shown in Figure 3. For the convenience of the
finite element formulation, the functionals for the fi-
nite element region are defined by using the Cartesian
coordinate system, while those for the infinite element
region are defined by using the cylindrical coordinate
system, which are represented as

(11)
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: Finite element region

: Infinite element region

Figure 3 Division of fluid domain

o Finite element region:

@) = [ G+ G+ Gy
- —(¢j)2‘15!
+ / a¢’¢,d5;, (12)
o Infinite element region:
) = [ UG+ ) + (Gl
- ‘/SI 57(451‘)2‘13/
- /S , %ika(dq)’ds, (13)

4. Discretization of fluid domain

To discretize the problem in the standard finite ele-
ment manner, it is necessary to describe the unknown
potential, ¢, for an element () in terms of the nodal
parameter vector, {¢$}, and the prescribed shape func-
tion vector, {N°}, as follows.

8% = {N}T{¢5} (14)

The functional is now minimized with respect to the
nodal values {¢;}, which gives

3H({¢}) N o N
ey - % KN - (7)) = (0

in which [K7] is the element system matrix represented
as

(15)



o Finite element region:

CHIRR TS o AR o ey (2 Y
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'/57 S (VYN YTdS] (16)
o Infinite element region:
ON°. ON® 1 1 6N
[{‘37}{ o) *alar Wz 9
+O Gy an;
Ji ; -g—{Ne}{N=}Tds;
/s iko{N}{N*}Td5?
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i

(17

and {Pf} is given by

8¢;

¢ - z¥r3 e e
#) = - [ G (s
All of such element equations are assembled to produce
a set of global equations pertaining to the fluid region.
These can be written in matrix form as

[K;{¢} = (B} (19)

The matrix [K;] is symmetric and banded, with its
half-bandwidth corresponding to the interaction be-
tween each node and its immediate neighbors.

Finite element region

For the efficient madeling, the inner region, §1;, is di-
vided into the upper and the lower regions. The upper
region is containing the solid body, and it is discretized
by using two isoparametric elements; i.e., 20-noded

8-noded FE
e fmnoded
Z
9 o~
20-noded FE \ R 18-noded 1€
d
\—\—«M A8
Beruded rn(—/
r = Fnite Doment
[ 4 = mfnite Dament
F8€ o fictitious Gottom Boundary Dement

FBBIE = fictitious Boltom Boundory Winite Cament
Figure { Modeling of fluid region
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{¢) B-noded FBBE

(d) 6~noded FBBIE

Figure § Definition of element coordinate systems

brick element and 8-noded plane element as shown
in Figure 4. The Lagrange polynomials are used for
shape functions of the isoparametric elements. The
lower region is modeled by using the fictitious bottom
boundary elements (FBBE) as shown in Figure 5. The
FBBE is a 8-noded element with the shape functions
as

cosh[ko(d = df)(1 + ()}
coshlko(d — dy))

{N}= {N(,m}  (20)
with -1 < £, < 1and -1 < ¢ £ 0, in which {N (¢, 1)}
= the vector of the Lagrange shape functions and d; =
the distance frowm the sea water level to the top of the
FBBE’s. Equation (20) has been derived from the z—-
directional behavior of the progressive wave component
in the analytical boundary series solutions, which is
approximately expressed as
¢; x coshiko(z + d)] (21)
The system matrices of the two isoparametric ele-
ments for the upper region are constructed using Gauss
quadrature. On the other hand, the system matrices
of the FBBE’s are constructed by performing the inte-
gration in the {~direction analytically,.

Infinite element region

In order to model the radiation condition at infinity
efficiently, and to avoid extensive fluid domain dis-
cretizations for the case of deep water, the three types
of infinite elements are developed. They are 16-noded
and 6-noded infinite elements (IE), and a 6-noded
fictitious bottom boundary infinite element (FBBIE)
shown in Figure 5. As shown in Figure 4, the outer
region, ;, is modeled using these elements with the
shape functions derived from the analytical boundary



series solutions as

o 16-noded IE (0 < £ < 00, =1 < 7,{ < 1):

No(EH{N(n,)}
{N} = ) (22)
No(§){N(n,{)}
o 6-noded IE (0 < € < o0):
No({N(n)}
{¥} = - (23)
No(E){N(n)}
o 6-noded FBBIE
(0<€<00,-1<97<1,-1<(<L0):
ey = lio(d =4+ g [ FOW)
coshlko(d~dp)] | wy(e)(¥(m)
' (24)

in which {N(n,¢)} and {N(n)} = the vector of the
Lagrange shape functions. N,(€) and N,(£) are the
shape functions in the radial(€) direction as

Na(©) fo(6)

Ny(€) f1(€)

in which fo(€) and f;(£) represent the asymptotic be-
haviors of the progressive and the first evanescent wave
components in the radial direction, respectively, and
[F] is the 2 x 2 coefficient matrix associated with those
wave components, which are given by

1

(25)

fo(§) = £+raeiko(€+r..)-<e (26)

Hh§ = i_r e—F1(€4ra) ' @)

oo | ) ’(%s)
= :71,._eiko1'b 71,-e"‘l'b

and € = the artificial damping parameter (0 < ¢ < k),
k; = the wave number for the first evanescent wave
component, and ro and r, = the radial distances to
the inner and outer nodes of the infinite elements from
the origin as shown in Figure 4. The artificial damping
parameter(¢) in equation (26) has been introduced, to
make the integration in equation (17) in the radial(£)
direction bounded. After the integration is completed
analytically, the value of ¢ is taken to be zero. The
shape functions, N,(£) and N,(£) in equation (25), ex-
cept for the artificial damping parameter(¢), have been
derived from the asymptotic expressions for the pro-
gressive and the first evanescent wave components in

12

the analytical boundary series solutions such as

vr
It is noted that the corresponding shape functions sat-
isfy the radiation condition at infinity.

The system matrix for the infinite element is con-
structed by performing the integration in the infinite
direction analytically, so that computational efficiency
may be acheived.

; 1
¢; = ap e"‘°'+a1-\/—;-e"‘"

(29)

5. Numerical results and discussions

A three dimensional finite element computer program
incorporating the infinite and the fictitious bottom boun
ary elements has been developed, and applied to sev-
eral floating structures in order to illustrate its valid-
ity. The accuracy and efficiency of the algorithm de-
pend on the location of the interface between the inner
finite element and the outer infinite element regions,
and the distance to the fictitious bottom boundary el-
ements from the body surface. The numerical experi-
ments were performed to determine the criteria for the
proper distance to the infinite and the fictitious bot-
tom boundary elements using an axisymmetric finite
element formulation by the present authors in the pre-
vious study!”. The numerical results indicated that
the distance to the infinite elements should be greater
than 0.3 times of the incident wave length, and the
distance to the fictitious bottom boundary elements
should be greater than 0.15 times of the incident wave
length from the body surface. In this study, using those
criteria, the example analyses are corried out for the
floating square barges in finite and infinite depths.

Floating square Barge in finite depth
Figure 6 presents the analysis results for a floating
square barge with h/a = 0.5, dfa = 1.0, and ¥ = 0°
(Figure 8(a)), in which a and h = the half width and
the draft of the barge, d = the depth of water, and
¥ = the angle of the incident wave attack. Unlike the
previous examples, this case must be treated solely as
a three dimensional problem. Yue et al.1911 reported
the results for the case of a fixed barge (i.e., diffraction
problem) by using a hybrid element method (HEM).
In this study, the diffraction and radiation prob-
lems are analyzed by using the element grid system
with 371 nodes. The exciting force coefficients and
the added mass and damping cocfficients are calculated
for various frequencies, and given in Figures 6(5) and
(c), respectively. Figure 6(b)indicates that the present
method gives satisfactory results compared with those
using a hybrid element method by Yue et al.
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(c) Added mass and damping coeflicients

Figure 6 Results for a ﬂoatfng square barge
with h/a = 0.5, dfa = 1.0, and ¢ = 0°

Floating square barge in infinite depth

Figure 7 presents the surge and the heave responses
for a floating square barge with h/a = 8/9, d/a = oo,
and ¥ = 0°. The fluid domain is modeled by using
the element grid system with 633 nodes as shown in
Figure 7(a). The present results are compared with
those obtained using a three dimensional Green’s func-
tion by Garrison!?, and also with experimental results
by Faltinsen et al20. It is found that the present
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method incorporating the infinite and the fictitious
bottom boundary elements gives the satisfactory re-
sults except for the slight discrepancy of the resonance
frequency for the heave motion. The discrepancy is

-caused by the differences of the heave added mass coef-

ficients (u33) between the present results and the pub-
lished results by Garrison. The heave added mass co-
efficients (p133) obtained in this study are found to be
smaller than those of Garrison approximately by 10%.
The differences might be caused by the shape func-
tions of the fictitious bottom boundary element in the
vertical direction (see, equation (20)) employed in this

-study. Further study is needed to investigate the cause

of the discrepancy.

6. Conclusions

In this paper, the finite element technique incorporat-
ing infinite elements is applied to analyzing the general

F2,=1082m

(a) Geometry and element meshes
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(b) Surge (| & |) and heave (| &3 |) responses

Figure 7 Hydrodynamic responses of a floating square

barge with h/a = 8/9, d/a = 00, and P=0°



three dimensional wave-structure interaction problems.
Two types of elements are developed to discretize the
fluid domain efficiently. One is the infinite element for
modeling the radiation condition at infinity, and the
other is the fictitious bottom boundary element for
an efficient discretization of the fluid domain for the
case of deep water. The shape functions for the infi-
nite element, in the radial direction, are derived from
the asymptotic expressions for the progressive wave
and the evanescent wave components in the analyti-
cal boundary series solutions.

Verification of the elements developed in this study
is carried out utilizing several kinds of floating struc-
tures. Comparisons with the results from other avail-
able sclution methods and experimental data indicate
that the present method incorporating the infinite and
the fictitious bottom boundary elements gives good re-

sults.
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