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Abstract

In this paper, faults existing in a software system is classified into three
types ; simple, degenerative and regenerative faults. The reliability functions
and failure rates of both a software module and system which have a mixture of
such faults are obtained and the expected number of failures in the system
after time T is also derived. Using the formulas obtained, a cost-reliability
model and an efficient algorithm for optimal software release time are proposed
via nonlinear programming formulation i minimizing the total test cost with
constraints on the failure rates of each module. Application of this model to

several cases are presented and it appears to be more realistic.
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1. Introduction

In this paper, faults are classified into three types : simple, degenerative,
and regenerative faults, whéfe all faults are regarded as simple faults in
Black box modell[4] or Mafkov nodel[7]. Simple fault is defined as that
eliminating a fault does not affect on other faults in the software system;
i.e.,this type of fault is independent of other faults. On the other hand, a
fault is called as a degenerated fault when several faults are eliminated
together if the fault is removed from the software system. Regenerative fault is
distinguished from other faults since several new faults are added to the
software system when a fault is eliminated from the software system. In this
case, the number of rather increases after a fault is eliminated.

The main concerns of this paper are the reliability and failure rates of both
software module and system which may have a mixture of these faults and it is
ultimately aimed to find a more realistic cost-reliability model for optimal
software release time. For this direction, we investigates reliability and
failure rate for a module and then proceed to a system that consists of modules,
and finally we formulate a cost-reliability model and present efficient
algorithm for the solution with comparison to a existing model. First,
Assumption and notations, which will be used throughout the paper, are

summarized in the following section.
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2. Assumptions and Notations

We assume that test starts at time 7z after the completion of a software
development as in Fig. 1-1. The reason to allow this time 7 is to estimate the
failure rate distribution by looking at the failure types and data during this

time period. Of course, we can put =0 if this is not necessary.

f ! time

completion of a software test starts

Fig 1.1 test design

Throughout this paper,the following assumptions and notations are used.

Assumptions

1) There are N faults by the completion time of software development.

2) M faults are eliminated during the time period T.

3) Faults can be classified and corrected immediately.

4) Fault occurrence rate & has a gamma (@, 8) distribution regardless of
type, ie identically distributed.

5) Program failure rate A given that there are are k faults is given by
A= Hrrda+r- - - - +Pk

6) Time to failure in a prbgran ,given A = A , has a exponential

distribution with rate A.
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Notations
A ¢ Program failure rate .
A * A realization of random variable A.
$ : Fault occurence rate.
o) : A realization of ‘random variable d.
Rm(t) : Reliablility of a module at time t after z,
Rs(t) : Reliablility of a system at time t after T.
E{Ni(t)}, E{NS(t)}: Expected number of failures in module i and systenm

during time period t respectively after test start.

BE.Reliability of a module

By the assumption that the occurrence rate of each fault is i.i.d. with ganma
(a,B) distribution, the probability density funtion of a module failure rate

A can be found as in Littlewood[7].

‘ (B + z) [ (B+T)ATN-M =t oyp(—(B+7 YA
Ay = —— (1)
[N-M) @-1]1

, where .8 : parameters of gamma distribution.
N ¢ the number of faults in the system.
M : the number of faults eliminated during <.
Let M: be the number of faults found during the debugging time T . then M in (1)

can be calculated as follows depending on the fault types eliminated;

M = My if all the eliminated faults are simple faults, and

M

2 di if all the eliminated faults are degenerated faults, where
di is the number of faults eliminated together when the ith fault is eliminated,
Ve also have

M=J+d (M - J) if the faults. eliminated are simple and degenerated types,

where J is the number of simple faults and the rest of each degenerative fault
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eliminates d faults simultaneously, and

M=J+d (Mg -J-L) -rL if the faults eliminated are simple, degenerative
and regenerative types, where J and L are the number of simple faults and
regenerative faults respectively and d(r) is the number of faults eliminated

(regenerated) by eliminating each degenerative (regenerative) fault

Performing the necessary integrations on (1), we get the probability density

function for the time to failure as

fal(t) = rf,.(tl A =A) F(A)dA

o

(N-M) @ ( B+ ) (N-MD

(B+t+t)("‘”)+l

From this probability density function, the reliability and failure rate of a

podule are obtained. The reliability of a module is

Ra(t)

-
[ fn(U)du
t
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and the failure rate is

ful(t)
Ra(t)
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4. Reliability of a system

In this section, the reliability of a system is discussed in detail. Let a
system consist of w modules, and the occurrence rate of faults in each module
have an identical independent gamma distribution. Suppose the ith module of the
system containing Ni faults such that the occurrence rate of each fault has a
gamma (ai,fB) distribution, and w modules in the system being tested
simultaneously by m persons. Let Ti be the time to failure for module i and Yo
be the time to failure for the system, then yo= min {T1, Tz, - - - - ,Tw}.

Therefore, the reliability of the system can be expressed, by defining Ri(t)

as the reliability of the ith module, as

Rs(t) =Pr ( yo ) t)

Pr (TI,TZ.....,TW > t )

Ri(t) Ra(t) .... Rw(t), since each module is independent.

Substituting equation (3) of the previous section into the above Ri(t)’s,

Rs(t) of a system is obtained as

w
. where §Jldenotes Z and Mi is the number of faults eliminated in the ith
i=

module during z.

The probability density function of the time to fajilure is then obtained by

- dRs(t)
dt

fs(t) =
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Z(Ni = M) ai
ZNNi ~Mi)ail B8 + T)

(N - Midai: + 1
(B + 7 +t)

Therefore, the failure rate of a system becomes
fs(t)
As(t) = ————
Rs(t)

TNt - M ai

(B + T + 1)

Here, the expression of Mi for each type of fault is the same as in the

previous section.

5. The Failure Rate And The Average
Number of Fajilures in The System

after Time T

This section presents the failure rate and the average number of failures for
each module and the corresponding system at time t= T+z, ie T hours after =

based on the formulas developed in the previous section.
Let Q = N-M at time 7 and the number of faults eliminated between = and

7 +T be K, then the number X has a binomal distribution so that
Q
Pr (K=k) = [~ ] Pk (1-Pya-k,
k

Here P is the probability that a fault occurs during(z, T +T) and thus given

by P=F(T), where froa equation (3)

.B,.,z-

a
3 I ] for each fault.
+ T+

FT) =1 - [
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Thus,

Q B k B+ (Q-K)>
Pr (K=k) = [ k] [ 1_[B.+_‘;Tl?—]a] [[mi ]a] .......... (8)

The unconditional reliability function of a module at time 7 +T+t can be

written as a function of t, with little algebraic manipulations.

Q
Ru(t) = ¥ Ra (t | K=k ) Pr(X=k)

k=1
Q B+T+T Q-2 . g B+T yalk B+T yal)(@-k)
=2 [ B+t+T+t) () [1 ) [B+t+T] ] { [5+r+ ) ]
B+ B+ B+7T+T
= {1 - (—b-+—;i_-]a+ [£_+;'_c+_T_]a [Efg%t]a ] DR (9

Therefore, the reliability of a system consisting of w module is

Re(t) =
i

Ri(t)
1

Hn3ac

, where R: t) is the reliability function of the ith module.
On the other hand, the average number of faults found between 7 and T + 7

for the ith module, denoted by E[Ni(t)], can be written as equation(10).

E[Ni(T}] = Qi Pi

- Qi[ 1- [%]a‘] = (Ni“Mi)[ 1—[B'g+;iT]ai} .......... (10)

, where @i,Pi are the number of faults in module i at time 7 and the
probability that a fault occurs in module i during [z, z+T] respectively.

The failure rate of ith module, A i(t), can be obtained by

fi(t) -Ri’(t)
Ri(t) Ri(t)

Ai(t) =
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Thus we have, at t=T

ai ai
Qiai (B+7T) (Ni-Mp) ai(B8+7)
Ai(T) = 2 e it ietaeeen (11)
aitl _ S ait+l
(B+7+T) ( B+7+T)

, where fi(t) is the pdf of time to failure for the ith module.

Consequently, the average number of failures during (7, T +T) and the failure
rate at time 7z +T for the system, denoted by E[NS(T)] and As(T)} respectively,

can be written as

B+T
EINS(T)] = % EDN(D)] = S(Ni-Mi) [ 1—[———] } ............... (12)

i

[+ 4
(Ni-Mi)a i(B8+7T) ‘

AS(T) = %
ai+l
( B+7+T)

6. A Mathematical Model
In this section a mathematical model for the optimal release time is

formulated as followings, utilizing the formulas developed in the previous

sections.
Minimize CiE[NS(T)] + C2{EINS(TLc)]-EINS(T)]} + Cag(T)

subject to As (Ts) £ Rs
At (T1) £

Aw (Tw) < Ru
. where C2 > Ci > O, Ca3 > 0 and
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EIN(T)]

E[NS(TLc) ]

g(T)

Ag(Ts )
A (Ti)

Rs

Ri

The above model is similar to the Yamada and Osaki’s model
difference is that this model
considering the following two aspects:

objective function to represent the benefit related to debugging time T, and the

The expected number of faults found in a system during the

period of T.

¢ The expected number of faults found during the life cycle time

TLe.
A monotonicaliy increasing function expressing the benefit
related to the testing time T.

The failure rate of the whole system at the testing time Ts.

¢! The failure rate of the ith module at the time Ti defined

earlier.

: The upper limit of the failure rate for the whole systea.

The upper limit of the failure rate for the ith module.

the function g(t) is included in the

failure rate is restriéted for each module as well as whole system since each

module is tested individually.

Consequently the objective function can be interpreted as follows :

C1EIN(T)] + C3 g(T) describes the cost during debugging and

C2{EIN(TLc)] - EIN(T)]} expresses the cost after releasing a software.

Using the formula (11), the time satisfying a constraint can be derived as

Ai(Ty) =

@i
Ni-Midai(B+7)

i+l

a
( B+T+T)
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Therefore ,

ai 1/ ai+l)
(Ni-Mp) ai(B8+7T) ]

Ri

Ti 2 [ - ( B+7 ) for i=z 1, .... ,W.

The most favorite time of the ith constraint is then

at 1/( ai+l)
»* [(Ni-Mi)ai(B+‘&') ]

Ri

- ( B+7 ) for i= 1, .... W

Ti

On the other hand, it is not easy deriving a formula to find the time

satisfying the constraint for the whole systenm. From the constraint for the
system, one can see that it is not possible transforming the above inequality

into the formula similar to that for Ti due to the denominator. In order to find

favorite time satifying the above constraints, a point searching method

developed as the following

PSA(Point Searching Algorithm)
Step 0. Initialization
a) specify € ,Rs,Ts
b) X=0, [ I=2

Step 1. Computing A (Tk) for the initial Ts

Step 2.
a) If | Rs - As(Tw) | £ €, go to Step 5
b) If [ Re - As(Tw) | > e, and
i) Rs ~ As(Tx) = O, go to Step 3
ii) R¢ - As(Tk) < 0, go to Step 4
Step 3.

a) If Re - As(Tk-1) 2 0,
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Tx
T¢ = Tg ~ —mm™ , K=K+1
11

go to Step 1
b) If R¢ - AscTk-1) < 0O,

IT = I1 + 1

Tk
Tk = Tk - , k=K+1
11
go to Step 1
Step 4.
a) If Rs - A s(Tk-1) < 0,
Tk
Tk = Tk + ———, K=K+1
11
go to Step 1
b} If Rg - As(Tg-1) > 0,
II =11 +1
Tk
Tx = Tk + JK=K+1
11
go to Step 1
Step 5. Terminate

The favorite time Ts* = Tk

The favorite time satisfying all constraint is max{Ts*, T:*,...,Tw*}.

Expanding the objective function using the formula(12), we get a nonlinear

function,
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£(T) (Cy - C2)EINS(T)] + C2 E[NS(Tic)] + Cs g(T)

(B + r)ai
(Cy = C2) T (Ni - Mi) 1 -
(B+7+T)

ai

B +T ]

} + Ca g(h
B+T+Tuc

+ C2 X (Ni-Mi> [1 - [

£(T) is nothing but a convex function as can be proved easily by the first
and second derivatives of £(T) with respect to T. Using Newton’s point searching
method, one can obtain the minimum point of the above convex function. The
minimum point is obtained by using the following formula successively until the

difference between Tk+1 and Tk is acceptable.

ai
(B + T)
(Ci— C2) T (Ni-Mi) ai + C3 g’ (Tw)
a i+t
(B8 +7 +Tx
Tk+1 = Tk -
ai
(B + 7)
(C2-Cy) TWi-M) ai(ai + 1) + C3g” (Tw)
Qi+2
(B+7+Tk)

Let To be the optimal point of f(T), Then the optimal release time which
minimizes the total cost and satisfies all constraints is selected among {To,
Ts*, T1*,...,Tw*}. Two cases are possible; To > max {Tg*, T1*%,...,Tw*} or To <
max {Ts*, Ti*,...,Tw*}. Considering both cases, the optimal release time T* is
equal to max {To, Ts*, T1*,...,Tw*}.; the minimal point of f(T) satisfying all

constraints.

In the next section, computational results for five different benefit
functions are considered to observe the dependence of optimal release time on
g(T). The functions taken are : g(T) = T0.5, g(T) = To-75, g(T) =T, g(T) =
TL-25, g(T) = Tt-S-
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7. Computational Results

A set of test problem have been solved to observe the optimal release time of
the model. All test problems have 11 constraints; one constraint for the whole
system and 10 constraints for modules, and two cases were considered : z = 0
and z = 0. In case of ¢ = 0, all faults in the system were assumed to be
simple faults, and for 7 =% 0, were assumed 3 cases: simple ,degenerative,
simple and degenerative. The model were coded in FORTRAN-77 and run on a
Macintosh SE personal computer, with appropriate data for =, Ci’s, Ra,Tsa, Ri’s,

ete.

Table 1. Optimal Release Times with g(T) =T

z =0 T * 0

simple simple degenerative |simple+degenerative
113.5 (Ta™) 87.6(Ts™) 76.2(T3*) 90.01(T3*)
71.54(To*) 83.3(To*) | 52.4(T7*) 77.6(T7*)
87.65(T7*) 88.7(T7*) 65.6(T7*) 75.7(T2*)

87.4 (Tz*) 85.2(T7*) 57.5(Ta*) 74.1(T7*)
111.02(T+7*) 85.2(T7*) 57.3(Ta*) 63.6(T10*)

Table 1 shows the results for each case with fixing g(T). Here the
parenthesized Ti* shows the time which achieves max {To, Ts*, Tt....,Tx} for

each problen.

Next, the test problems are runned by varying g(T) to observe the dependence
of optimal release time on the form of g(T).

Table 2 shows the computationali results from which we can make following

observations.
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Table 2. Optimal Release Time with Various g(T)
T =0 T 0
£(T)
simple simple degenerative|{simpie+degenerative

TO-5 111.4(To) 79.8(To) 58.2(To) 67.8(To)
T0.75 42.6(To) 44.01(Ts*) 35.4(T3*) 40.1{(T3*)
T 33.3(Ts5*) 44.01(Ts*) 35.4(T3*) 40.1(T3*)
T1.25 33.3(Ts*) 44.01(Ts*) 35.4(T3*) 40.1(T3*)
TL.5 33.3(Ts5*) 44.01(Ts*) 35.4(T3*) 40.1(T3*)

Comparing with Table 1, one can see that some of the optimal release times
are minimal points of the objective function, i.e. To is the largest time among
To, Ts*, T1*,...,Tw*. To is apt to be the optimal release time in case of g(T) =
TO.5 or T®-75, since the testing time for minimizing the total cost is generally
larger than the times satisfying constraints.

Table 3 shows the minimum points of the objective function in case of no

constraints, which can be solved uniquely by Newton’s method.

Table 3. The minimum cost time for various g(T)
T =0 T % O
g(T
simple simple degenerative | simple+degenerative
TO-S 97.61 72.64 54.47 64.04
TO-75 39.62 29.9 22.68 26.48
T 20.13 15.22 11.48 13.43
Tt.25 11.68 8.8 6.6 7.74
T1.5 7.48 5.64 4.24 4.96
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Observe that for every case the minimum cost time decreases exponentially as
increasing the power of T in g(T) so that the minimum cost times in case of
g(T)=T1-5 are very small compared with those of g(T)=T°-5 , where the former
represents the case of insufficient time and the latter case has enough time
from the viewpoint of benefit obtained by releasing a software timely.
Accordingly, one can recognize that the benefit function g(T) plays an important

role in deciding the optimal release time of a software systenm.

8. Conclusions

In this paper, a cost-reliability optimal release time model for a software
system has been studied. Faults existing in a software system are firstly
classified into three types, and formulas for reliabilites, failure rate, and
mean number of faults in the system are obtained regarding these three types of
faults. This model considers the constraints on both modules and whole system as
well as the aixture of fault types, and incooperates a benefit function for the
release time. Thus it can be considered as an extension to existing models which
considers only simple faults and constraints on whole system without benefit
function. Consequently, it is expected that the model developed here would give

more realistic solution comparing with the existing models.
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