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Optical Pattern Recognition Based on Holographic Associative Memory
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Abstract

We have developed a new holographic
associative memory(HAM) based on an
adaptive learning which uses learning pattern
method (LPM). The LPM utilizes the simple
optical implementation of outer-product
learning, however we have obtained the
better performance of adaptive learning.
Results of optical experiment and computer
simulation are represented.

I. Introduction

Neural networks are characterized by
massive parallelism, dense interconnection of
processing elements (neurons), and
information storage in distributed manners.’
Optical information processing using a
hologram inherently has such properties.”
Recently, optical implementations of Hopfield
model® and various holographic associative
memory(HAM) have been developed by
many authors.*’® Another important property
of neural network is the adaptive learning
that is the ability to learn dynamically the
interconnection(synaptic)  weight  through
iterative adaptation.™ _

In the associative memory such as
Hopfield model, the interconnection matrix is
obtained by adding all outer products of
memory patterns, and it has a merit that the
optical implementation can be done easily
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with vector-matrix multiplication devices’ or
by holographic systems.>® However, there
exist some limitations such that the memory
patterns  should be  pseudo-orthogonal
(statistically independent)*® and have an
approximately equal number of ones and
zeros in order to have maximum
performance. Undesired stable states may also
exist when the number of stored patterns is
larger.

In this paper, we propose a new HAM
using learning patterns derived from the
interconection matrix obtained as a result of
an adaptive learning rule. We note that all
memory patterns are stored in stable state
when we store those learning patterns in a
holographic recording medium. In Sec.II, the
principle of the learning pattern method
(LPM) is introduced. The deriviation of
learning patterns to be used in experiment,
the experimental setup and the experimental
results for recognizing the various inputs are
presented, and finally the merit and
applications of the present HAM are
discussed. The result of computer simulation
of present HAM is compared with that of
Hopfield Model.

I1. Principle
A. Review of the Delta Rule

For the input pattern i; we expect the
desired output pattern t; and the actually
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obtained output pattern o, then we define the
measure of the error by

E = (12)2(t - o), (1)
where X, denotes summation over .
According to the well known adaptive
learning  rule,” the change of the

interconnection  weight AW; through an
iteration is related to the gradient descent in
the error function E as following;
AW, oC -0E/aW,, ®)
which may be written by using the chain rule
as the product of two parts,
dE/oW; = 9E/30;Xd0/dW,. 3)
The first part in the right hand side of
Eq.(3) is the derivative of the error with
respect to the output and the second part is
the derivative of the output with respect to
the interconnection weight. From Eq.(1) and

as o=2,W;i, we get
8E/do0, -(t - 0) = -3, 4)
d0/oW, = i, (5)
-0E/0W; = 8, (6)

and by giving the learning rate v, we obtain

AWij = n(t - oi)ij = naiij' N
Therefore, the interconnection matrix Wij can
be changed by this rule in the way the error
is minimized.

B. Definition of Learning Patterns

In the optical implementation of HAM,
the direct application of the adaptive learning
rule Eq.(7) is not easy compared to that of
the conventional outer-product learning.* The
LPM is a method which uses the adaptive
learning and the solutions of the inverse
problem of outer-product algebra. The
principle of the proposed LPM is as follows
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Let W' be an interconnection matrix
having descrete and all positive elements
obtained from Eq.(7) with  proper
modification.(see Sec.III-A.) This matrix can
be expressed as the linear combination of
other matrices T™ defined as following;

W = 5 aT"

2m(x'l"n.um(\/m)’r’

(8)

where T denotes transpose operation, o, is
the constant coefficient, and the matrix T™
is the outer-product between new vectors u®
and v” with elements of binary values (1,0).
We define u™ and v" as the learning patterns.
The derivation of learning patterns from W°
is the inverse problem of vector outer-
product. Although the way of it is not
unique, we try to get a less number of the
learning patterns for the convenience of the
present experiment.
The roles of learning patterns in
experiment is described in Sec. III.

the

C. Retrieval of the Stored Information
Recognition algorithm for an input b™ is
similar to that of the Hopfield model:

b 1, if ZW,b" > 6,

0, otherwise,

)

where 0, is the input dependent threshold
level™® and it is written by

AZ b

i T [ e

= AN,

0
(10)

where N, is the number of 1’s in the input
b"™ and N is a constant scale factor which
determines the slope of threshold level with
respect to N;. The energy function U is
defined as usually as following;

U

1]

-(I2)ZZ W, b + Zeb"

it St SR

AAR)EZ Wb + A(Np)? (1)



It is important to get the appropriate value
of A, because the stable state of energy in
Eq.(11) is depends on A.

III. Experiment

A. Memory Patterns
The three 2-D binary patterns b!, b?, and
b’ are the three Korean alphabets(Hangul) as

shown in Fig.1(a). They are selected as the
memory patterns for the present experiment
and simulation work. We note that two of
them, b' and b?, are contained in b’. In the
form of 25 bits vector(Fig.1(b)), they are
written as follow;

b'=(1111100001000010000100001)",
b?=(1111110000100001000011111)7,

b*=(1111110001100011000111111)".  (12)

o [ N
B! B b’

—_——
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212232425

Fig.1. (a). Three 2-D memory patterns with 25
(5x5) binary (transparent/opaque) pixels.
(b). Pattern basis for vector representation.

the
and

The algorithm for obtaining
interconnection matrix of descrete
positive elements is as follows;

1) W =0, n=1.

(2) Give threshold level(TL).

(3) m=1.

@i =t = b

(5) Make output as binary pattern:

o =1, if ZW/i > TL,

1
= 0, otherwise.
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(6) Apply Eq.(7) with W;'=0 if W,’<0.

(7) Repeat (5),(6) until =0, for all i

(8) Repeat (4)~(7) for all m.

(9) Repeat (2)~(8) by changing TL slowly
until AW;'=0.

Figure 2 illustrates the 25%25
interconnection matrix W' obtained by using
above algorithm. The threshold level is an
imfortant factor to get the interconnection
matrix of which all memory patterns to be
stored in stable state.

NOCOOOOOOCOOOOOCOOOOOONNINNIN
NOOOCOCOO0ODOOOOCOOOONNINININ
o OoCOOOoOoCOOOOOCOOOOOOOMNNNNNN
NOCOCOOODOOOOOCOCOOOOONINNINN
NOoOCOOOOCoOOOOOOOOOOOOONNMNIN
HNNNOOOONOOOONO OO O = -
[=l—jelall=lelelofololalolelelolofela ol el - T =T
COCCOOUOOOOOOOCODOOOODOTO
COCOOOOLODOOOLOOCOODODOOOOD
HOOQOUMOOOONMOOOONOOOC i ket =
NNV OCOONOOOONO OO DI s b ks
COOCCO0OOOOOOOoOOOOOOOOOO
COOCOCOOOOOOOLOODOOOOOOOOOOS
»* COoCOOOO0COOOOOLOCOOOOOOOOOD
HOOOOMICOOOUMIOOOONOCO O k= k=
HNNDNNOCOCNOOOONO OO O DI b= e
COoOCOCOCOOOOOOOOOCOOOOOOD
COCOCOOOLOLOOOOLOOOCOOOOOD
COOCOCOOOCOOOOOOOCOOOOOOOD
—OOoOOMNMOOCOONOCOONO O OO bt et it e
FPRNNNOOOONOOOCOINO OO DI -
HNNNOOOONOOOONO O O N ket = s
HFRNNNNOOCOOINOOOONO OO N = s s
HONONOOOONOOODONOO O I 4t -
NOOOOCOOOOCOOOOoOOOOOO NN

=

Fig.2. The 25X25 interconnection matrix W’
obtained from the delta rule for the memory
patterns b', b?, and b’

B. Derivation of Learning Patterns

The interconnection matrix of Fig.2 can
be represented as the sum of four matrices
T', T2, T3, and T* with constant coefficients
o, =a,=2, a;=5, and o,=1, respectively.

= m m
W, = Za"T,",

= 2T/ +2T+5T,’+ T}

ij »

(13)

1.1 2.2 3.3 1.4
2¢;¢ +2¢7¢f +5¢7c] ¢ 'cy,

where T', T2, and T® are three symmetric
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metrices consisted in the outer-products of
7', ¢, and ¢* with themselves, and T* is the
outer-product between ¢! and ¢*. The learning
patterns ¢', ¢, ¢*, and ¢* are written in the
vector form as following;

¢'=(1111100000000000000000001)",
¢?=(0000010000100001000011110)T,
¢*=(0000000001000010000100000)",
¢'=(00000100011000110001111 10)".

(14)

¢t & A ¢t

Fig.3. Four learning patterns ¢', ¢, ¢*, and
¢* extracted from the interconnection matrix.

Those four learning patterns are shown in
Fig.3. An interesting fact is that the learning
patterns can be represented as the mixed
states of the memory patterns b', b, and

b® as they follow;
¢ = b A b
= b A b
S =0 A '5‘2,
¢t = b A (b A b, (15)

where A and — stand for AND and NOT
logic operations, respectively. We point out
that three memory patterns b', b?, and b* are

stored in the present HAM as the
consequence of recording those four learning
patterns c', ¢, ¢?, and c*.

C. Threshold Level

To illustrate the dependence of energy on
the N in Eq.(11), and to know the
appropriate value of A which determines the
threshold level in Eq.(10), we constructed an
energy values diagram along two paths for
various values of N\ as shown in Fig.4. Both
paths begin from the memory pattern b', and
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Fig.4. Energy values of Eq.(11) versus
Hamming distance from b' with various values
of \.

are constraint to pass other memory patterns
b’ and b?, respectively. When the value of
A is small, the memory pattern b®, which has
comparably large number of 1’s, is most
stably stored. On the other hand, the pattern
b', which has small number of I’s, is stably
stored for larger value of A. We note that
all memory patterns b’, b?, and b® can be in
stable state for 0.5<A<0.6.

For the input b', as an example, the
output is obtained from the Eq.(12)~Eq.(14)
as followings;

EWib! = F[2cle!+2c% e+ Sck el + ¢l b,
262D +2¢7Scb + 5¢°2e’b +¢/2eb],
15(c!'+c?),

15b..

(16)

Eq.(16) shows that the output is the same as
the input multiplied by a factor of 15.
Therefore, we obtain the output which is
exactly the same state of b' after threshold



operation of Eq.(9) and Eq.(10), i.e.,
8, = AN,
= 0.6x9 = 54,
< 15. 7)
HOLOGRAPHIC
PLATE

I 1(c™ m=1,2,3,and 1)

DIFFUSER

IZ(cn. n=1,2,3,and 4)

Fig.5. Schematic diagram of recording the
outer-product of learning patterns.

D. Optical Implementation

Figure 5 shows schematically the lensless
diffuser system™® used for recording the outer-
products of the learning patterns. The
interference patterns, between the collimated
coherent beam passing through the input
plane I, and the scattered beam from the
input plane I,, construct holographically the
outer-product of the learning patterns ¢™ and
c® placed at I, and I,, respectively. The
recording medium is Kodak High Resolution
Plate-Type 1A and it is exposed four times
successively by recording the four pairs of
learning patterns [c',c'], [c’,c?], [¢’,c’], and
[c',c*] with the exposure times propotional to
the ratio of 2:2:5:1, which are the constant
coeffients «,(m=1,2,3, and 4) in Eq.(13).
The 514.5(nm) Ar* laser beam is used for
exposure. The mask(3cmx3cm) with 25(5%
5) transparent/opaque pixels(2mmXx2mm) is
used throughout the experiment. The diffuser
is an optically flat glass ground with silicon
carbide powder of grain size 80~100(um)
and the same diffuser is used throughout the
experiment. The limitations of pixel size due
to the diffraction effect have been disscused
in other paper.®
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Fig.6. Experimental setup of reconstruction
process.

Figure 6 represents the recognizing system
for the various inputs of the memory patterns
b™(m=1,2, and 3). The 1st order diffracted
beam from hologram arriving at the screen
gives the reconstructed output. A CCD-
camera is used to detect the reconstructed
output. Threshold operation is carried out by
using an electronic processor connected to the
CCD-camera. The input dependent threshold
level is controlled by detecting the focused
intensity of the undiffracted beam(0th order
diffraction) passing through the hologram at
the  photo-diode  dectector, which is
propotional to the number of transparent
pixels of the input pattern(N, in Eq.(10)).
The thresholded output is displayed on the
monitor. Feedback is made by using the
thresholded output as the new input pattern
of next iteration. Figure 7 illustrates the
outputs (reconstructed and thresholded) for
the various inputs with differing HDISTs. The
correct output b' is obtained for the inputs
of (a) and (b). Similarly b® is obtained for
the inputs of (c) and (d), and finally b is
obtained for the inputs of (e) and (f).

In order to see the overall performance
of the system quantitatively, computer
simulations are carried out for our system and
compared with that of the Hopfield model.
Figure 8 represents the results of computer
simulation in which the recognition ratio,
defined as the number of correct recognitions
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per the total number of the inputs.
Simulations are repeated for 100 random
generated inputs of each HDIST (0 to 25),
and the results are averaged for the three
memory vectors b', b, and b’.
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Reconstructed
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Fig.7. Experimental results of recognizing the
various inputs (a)~(f).

IV. Discussion and Conclusion

LPM  utilizes both  the  simple
implementation of outer-product learning and
the better performance of adaptive learning.
The interconnection matrix having elements
all positive values, does not reduce basically
the performance of the system, because it has
an effect only in raising the bias level of the
matrix, and it needs input dependent
threshold level. In the experiment, learning
patterns are recorded in HAM instead of the
memory patterns. There is a considerable
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Fig.8.Results of computer simulation of present
model(+) with \=0.6 in Eq.(10) and Hopfield
model(D ).

error correction capability in our HAM.
Results of the computer simulation show that
more than 90% recognition ability is obtained
within the HDIST of 4 which corresponding
to 16% error in pattern, which have been
shown to be better than those of Hopfield
model. Our system will be a good solution
for recognizing the characters or images
which have similar or common parts in the
others, for example [E,F], [c,0,e], and
human faces.

In conclusion, we have proposed a new
HAM based on the the adaptive learning and
the optical implementation is simply done by
outer-product of learning patterns. We have
shown that the memory patterns are stored
inherently in stable state when these learning
patterns are recorded in the hologram. We
have presented the results of the optical
experiment and computer simulation.
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