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Abstract

We consider the object recognition of industrial tools which
have one degree of freedom. In the case of pliers, the shape
varies as the jaw angle varies. Thus, a feature vector made
from the boundary image also varies along with the jaw an-
gle. But a pattern recognizer should have the ability of clas-
sifying objects without any regards to the angle variation.
For a pattern recognizer we have utilized a backpropagation
neural net. Feature vectors were made from Fourier descrip-
tors of boundary images by truncating the high frequency
components, and they were used as inputs to the neural net
for training and recognition. In our experiments, backprop-
agation neural net outperforms the minimum distance rule
which is widely used in the pattern recognition. The perfor-
mance comparison also made under noisy environments.

1. Introduction

A major task in the robot vision is the recognition
of industrial parts and tools in factory environments.
Since the information about the handling objects are
usually known in advance, the problem of object recog-
nition (or pattern recognition) turns out to be that of
object classification or pattern matching.

Two major steps are involved in the object recog-
nition. The first one is a low level vision processing in
which we detect the edge or the boundary of the objects
and make a feature vector for each set of visual image
data. This process is often called feature extraction.

The second step is the classification of feature vec-
tors which came out from the low level vision processing.

Most of industrial tools have one degree of free-
dom. For example, a plier can have different jaw angles

(angle between the noses of a plier). Thus, as we vary
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the angle its image also varies. But, an object classi-
fier should have the ability of telling that those images
were made from one object. In this paper we are con-
sidering a method of recognizing tools which have one
degree of freedom. For this purpose, we utilize a back-
propagation neural net which is widely used in various
fields such as robot vision, voice recognition, robotics,
and so on[4,5,6,9].

In this paper we take the following procedure for
object recognition: Firstly, we obtain an object image
by utilizing a camera positioned above the object. Each
image lies in 256%x256 pixels and each pixel has 8 bit
resolution. By thresholding the pixel data we obtain
a binary image. With a border following algorithm
we extract the edge from the binary image[13]. Then,
boundary data comprises two sets of position data, i.e.,
z position data and y position data. Using these data
we make Fourier descriptor of the object, and it was
already shown that the Fourier descriptor is invariant
with respect to the image rotation, translation, and size
scaling [7,8,13]. That is, the Fourier descriptor gives a
unique feature vector under the image transformations
such as translation, rotation, and size scaling. We use
Fourier descriptor as feature vector.

Secondly, we train the neural net with the feature
vectors of some sample objects. Applying the feature
vector of an unknown object to a trained neural net as
an input, we can recognize that object.

For test objects we have used three kinds of pli-
ers. We also compared the performances of back-
propagation neural net with that of a minimum distance

rule. We also checked the performance when the noise



effects are significant.

2. Feature Extraction and Fourier Descriptors

For object recognition, we need a certain value,
namely, a feature vector which represents the object.
Since the main information of an object can be found
in the boundary of the object, we utilize the bound-
ary data of a given image for making Fourier descrip-
tor. The reason for using Fourier descriptor as a feature
vector is that it gives a unique value irrespective of the
image rotation, translation, and size scaling. Another
advantage of utilizing Fourier descriptor is that we can
compress the data size easily by eliminating the high
order components. In the following we illustrate the

procedures of obtaining Fourier descriptor.

A. Data Collection

We assume that a single tool lies in each image
plane, thus there is no possibility of objects’ occlusion
and touching.

An object image is captured in 256 x 256 pixels

and each pixel has an 8 bit gray level resolution. The
pixel data are stored as a 256 x 256 matrix in Sun-

4/Sparc station. By thresholding the image data we
obtain a binary image, from which we obtain boundary
< m < L with the use
of boder following algorithm[13]. Figure 1 illustrates the

coordinates (z[m],y[m]) for 1

procedure for obtaining boundary image of a plier.

B. The Fourier Descriptors

Taking the discrete Fourier transformation of the
data, z[m], y[m], 1 < m < L, we obtain the Fourier
coeflicients for 0 < k < L —1:

L

alk] = % Z z[m)e~*EIm (1a)
1 L
o = 3 ylmlekEI™, (18)

We discard the d-c components, a[0] and b[0] since they
carry the information about the position of the image
center. Note that the Fourier coefficients, alk], b[k],
1 < k < L -1 are not rotation invariant. To obtain a

rotation invariance, we define r[k] by
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rlk} = Vla[k]? +[bk]1?,  1<k<L-1, (2)

where |a[k]| denotes the absolute value of a complex
number a[k]. Note that |a[k]|%, |b[k]|? for 1 <k < L -1
signify the energy spectrums of z and y, respectively and
that r{k] is invariant with respect to the image rotation
and translation. In order to provide an invariance to

the size scaling, we need a sort of normalization. We

define s[k] by

rlk]

Then s[k] is invariant to the size scaling, as well as to

s[k] = 1<k<L-1.

rotation and translation.

The low frequency part of s[k] determines the
global shape of an object, while the high frequency part
does the detailed shape. Since the high frequency part
are easily degraded by noise and does not contribute
much to the object recognition compared with the low
frequency part, we usually discard the high frequency
components. Discarding the high frequency part, we
can compress the data size significantly, and this is one
of the reasons for using Fourier descriptor.

The data points of the boundary image in Figure 1
amount to more than 500, i.e., L > 500. But, as we
can see in the Table 1 the coefficients, a[k], b[k], r[k],
s[k] vanish significantly as n increases. In our study,
only first 16 components, (s{1],---, s[16]) were used as
a feature vector of an object among more than 500 co-

efficients.

3. Construction of Neural Network

Neural networks designed for classification require
supervised training. Also, for the supervised training
there should be a provision in the neural net for specify-
ing class labels (or vectors) for each of training patterns.
Backpropagation(BP) neural net is the most popular
one among many neural net paradigms that satisfy the
requirements for pattern classification[9][12).

For the effective use of the neural net, it is reason-
able to bound the number of input nodes, as well as the
nodes in the hidden layers. As was mentioned earlier,
a feature vector is made with the first 16 components
(s[1],---,s[16]) out of more than 500 Fourier descrip-



tors. Hence it is very natural that the input layer has
16 nodes in this work.

We have utilized three kinds of pliers as test objects
for our experiment. In our experiment we choose three
output nodes. We construct a BP neural net as shown in
Figure 2. It has two hidden layers: the first hidden layer
has 20 nodes while the second one 12. Each processing
element (neuron or node) is fully connected between the
adjacent layers.

We denote by (i,n) the i** node of the n'* layer.

Also we let

N, : the total number of nodes in the nt* layer;

M : the total number of target vectors (output patterns
or class labels);

Tin : output of the node (7,n);

w;}—’ : link weight from the node (j,n — 1) to the
node (,n);

Bin : offset (bias) of the node (7, n);

tip : the i** element of target vector, p.

The operation of the node (i,n) is characterized by

Nn-1
—1
Zin = Z w?j Tjn-1+ gina (4)
Jj=1

Tin = fn(zin)v (5)
where z;; is the /** element of the input vector. Func-

tion f, : R — IR is chosen as

fn=1

T,

fay=4 _1
14+ e2’

(input layer);

(6)

ifn=23,4
(hidden layer, output layer).

From the above discussion it follows that Ny = 16, N, =
20, N3 =12, Ny = 3, and M = 3 in our example.

We choose as an error function

Ny

1
Ep = 5 ;(t,'p — 1:.'4)2,

M

where z;4 represents the i** element of the actual out-
put pattern produced by the presentation of an input.
Applying the steepest decent (gradient) rule, we obtain

wli(t+1) = wl(t) + 188 1T jn, (8)
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where 7 is a positive real constant and

Npti
(1 —zin)zin Z % i1 Wi

k=1
Fid for n=2,3(hiddenlayers);

in

9

(tip — Tia)zia(1 — zia),
for n=4(outputlayer).

Constant n determines the learning rate and 6, repre-
sents the i™* element of the error in the n** layer.
But, instead of (9) we utilize the following modified

rule as our weight update algorithm:

wi(t+ 1) = wi(t) 4+ 06,1250 + @Aw((t),  (10)
where « is a positive real constant which determines the
effect of the past weight and Aw[(t) = wl}(t)—wli(t~1)
is often called momentum term [5]. Equation (10) can
be written equivalently as Aw?(t +1) = b}, ,zn +
aAwl(t).

4. Simulation Results

A. Training of the Nerual Net

Figure 3 shows the boundary images of three model
objects (pliers). Four pictures were taken for each plier
with different position, orientation, scale, and jaw angle.
The four boundary images in each row of Figure 3 were
made from the same object, but different jaw angles
make differences in shape. We name the plier in the
first row of Figure 3 plier 1. In the same way, we name
the one in the second row plier 2 and the one in the
third row plier 3. We have utilized all twelve boundary

images in Figure 3 for the neural net training.

The target vectors (output patterns or class la-
bels) are set to (ti1,ta1,t31) = (0.95,0.05,0.05) for
plier 1, (t12,%22,t32) = (0.05,0.95,0.05) for plier 2, and
(t13,t23, t33) = (0.05,0.05,0.95) for plier 3. The reason
for not choosing (1,0,0), (0,1,0), and (0,0,1) is that if
we choose these values the training time grows indefi-
nitely large.

Since there are twelve sets of training patterns, we
evaluate an error sum by summing twelve sets of output
errors. Figure 4 shows the reduction of the error sum
as the training of the neural net proceeds. After 4000
iterations with feature vectors made from the samples

in Figure 3, the error reduced to 0.008138. At this time



we let n = 0.5 and o = 0.3.

B. Recognition

For the performance test of the neural net we made
another 20 images for each object by varying position,
orientation, scale, and the jaw angle. We define an out-
put vector (out[1], out(2], out[3]) by thresholding neural

net outputs in such a way that for i =1,2,3,

1, if z;4 > 0.7;
outli] = {0, if £iy <0.3; (11)
unknown if 0.3 < z;4 < 0.7.

If (out[l], out[2],0ut[3]) = (1,0,0), we regard the ap-
plied object as plier 1. In the same manner if
(out[1], out[2], out[3]) == (0,1,0), we regard the applied
object is plier 2, and if (out[1], out[2], out[3]) = (0,1,0),
plier 3. There are cases which do not belong to any of
the above three classes. That is, if out[i] =unknown as
a result of 0.3 < ;3 < 0.7 for some 1 < 7 < 3, then we
claim that the test object is not one of the trained ones.

In pattern recognition, the minimum distance rule
is widely used. We have compared the performance of
the neural net with that of minimum distance rule. The
minimum distance rule classifies the object based on the
relative distance between the Fourier descriptors of an
unknown object and the stored patterns. In our ex-
ample, the procedure for classifying objects with the
minimum distance rule is as follows: Firstly, we make
reference patterns, F!, F?, F* by taking averages of the
feature vectors (s{1],--,s{16]) in each row of Figure 3.
For a given unknown object we obtain a feature vector

T, and measure the Euclidean distance D* between T

and F* ie.,

D* =T~ F¥| = (T~ F&I(T - F%)  (12)

k=1,2,3.

If D! < D?, D? then we regard the unknown object is
plier 1. In the same way if D? < D', D? then we regard
the unknown object is plier 2, and if D® < D*, D? then
plier 3.

Some of the test object images are shown in Figure
5. Table 2 shows the accuracies of recognition of the
neural net and the minimum distance rule. In the case
of the neural net the rate of success is 100%, while in the

case of the minimum distance rule the rate of success is
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not 100%.

Inherently, the minimum distance rule does not
have the ability of telling untrained objects from the
trained ones. But, neural net can distinguish untrained
objects. We also have made experiments with untrained
objects. Figure 6 shows the untrained samples that we
have used. Applying objects (a), (b) in Figure 6, the
neural net outputs (z14, T24, z34) =(0.436413, 0.563798,
0.000506) (214, 724, 34) =(0.624573, 0.401319,0.000265)
respectively. According to (11), neural net output tells

us that those objects are not the trained ones.

C. Recognition of Noisy Objects.

To check the performance of the neural net in the
noisy environment, we made noisy objects by adding
Gaussian random noise to the boundary coordinates,
z[m], y[m],1 < m < L of the cbject. Figure 7 shows the
boundary images after adding Gaussian noise to those
in Figure 5. We performed the experiments with 20 dif-
ferent test images for each plier for the cases where the
noise variances are o2 = 9 and % = 25. The classifica-
tion results are shown in Table 3. One can elso notice
that even when the noise effect is significant the neural

net outperforms the minimum distance rule.

5. Conclusion and future research

A neural net approach for recognition of industrial
tools has been proposed which have one degree of free-
dom. The shape of industrial tools such as plier varies
as the jaw angle varies. Hence in this case, a prob-
lem is whether an object classifier can classify objects
without any regards to the angle variation. We have uti-
lized three pliers for our experiment. The results show
that the trained backpropagation neural net classifies 60
test objects with zero percent error which were made by
varying position, orientation, size and the jaw angle of
pliers. We also checked the performance of the neural
net with noisy input data. At this time, though the rate
of accuracy of the neural net was not 100%, it outper-
forms the minimum distance rule. When an untrained
object is applied, the neural net can claim it as an un-
known object, while the minimum distance rule cannot.
More work needs to be done concerning recognition of

objects partially occluded.
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Fig. 1. Procedure for obtaining boundary image. (a)
digitized image of a plier, (b) image after thresholding,
{c) boundary image.

n a[n} b[n) r[n] s[n)

1 127.174304 |28.716726 | 39.535973 | 1.000000
2 [20910113 | 16.690584 |26.754596 | 0.676715
3 |10.9009%9 | 7.807503 | 13.408537 | 0339148
4 1977567 1 2.017708 | 2.825229 | 0.071460
5 2242817 | 2320525 | 3.227238 | 0.081628
6 4.547157 | 3.575404 | 5.784475 | 0.146309
7 2.796431 | 2463459 | 3.726749 | 0.094262
8 0.677361 | 0.196267 | 0.705223 | 0.017837
9 2577942 | 1967037 | 3.242687 | 0.082019
10 | 0.452130 | 0.675030 | 0.812457 | 0.020550
11 0.511461 | 0.714221 | 0.878467 [ 0.022219
12 | 0464167 | 0398693 | 0.611888 | 0.015477
13 0.110593 | 0.298788 | 0.318598 | 0.008058
14 0.652296 | 0.533528 | 0.842691 | 0.021315
15 0.098410 | 0.065227 | 0.118064 | 0.002986
1o 0.384241 0.305962 | 0491176 | 0.012414

Table 1. Fourier descriptor of the object in Fig.1.

Fig. 2. Structure of two hidden layered BP neural net.
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Fig. 3. Boundary images of plier 2, and plier 3 used
for neural net training. The images of plier 1 lie in the
first row, plier 2 in the second row, and plier 3 in third
row.
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Fig. 4. Error versus iterations. After 4000 iterations,

the error reduced to 0.008138.
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Fig. 5. Some of the test objects.
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e | 2y [
1 100 % 85 %
2 100 % 95 %
3 100 % 100 %

Table 2. The accurate recognition rates of the neural

net and the minimum distance rule.

Y

(2) (®)

The boundary images of untrained objects.

Fig. 7. Boundary images after adding Gaussian ran-
dom noise(0? = 9,zero mean) to the boundary images
in Fig.5.

ot | et | sance it | 2o | iname
1 93 % 0% 3 95% 833%
2 100 % 95 % 2 100 % 95%
3 100 % 100 % 3 100 % 100 %

(@) (b)

Table 3. The accuracies of the neural net and the

minimum distance rule (a) 0 = 9 and (b) 0% = 25.



