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ABSTRACT

In this paper, we suggest the exact perturbation
analysis(Exact_PA) technique with respect to the buffer
storage in tandem queueing networks, through which the
optimal buffer storage design problem is considered. The
discrete event dynamic equations for the departure time
of a customer are presented together with the basic
properties of Full Out(FO) and No Input(N1) with respect
to the buffer storage. The new perturbation rules with
respect to the buffer storage arc suggested, from which
the ecxact perturbed path can be obtained. The eptimal
buffer storage problem is presented by introducing a
performance measure consisting of the throughput and the
buffer storage cost. An optimization algorithm maximizing
this performance measure  is derived by using the
Exact_PA technique. The proposed perturbation analysis
technique and the optimization algorithm are validated by
numerical examples.

1. INTRODUCTION

The perturbation analysis(PA) technique is considered
to be the combination of the analytic and the simulation
method. Thus this method is known to be less costly
and to have less assumptions. Many researchers have
applied the PA methods to the sensitivity analysis of
some performance measures such as the system throughput
and the waiting time{2-8]. While most papers deal with
PA technigues with respect to continuous parameters such
as service time, only a few papers[1,3-7) have discussed
PA techniques w.r.t. discrete parameters such as buffer
storage.

The estimation accuracy is important in the PA
technique. Generally, the performance measure such as the
throughput cannot be accurately estimated if the amount
of the parameter perturbation is not small. In the case
of a discrete parameter, the amount of the parameter
perturbation cannot be small as seen in the buffer
storage of general queueing systems. Therefore, the
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accurate estimation of the performance measure with the
discrete  parameter perturbation is  difficult through
PA  techniques since conventional PA
techniques require the small parameter perturbation for
accurate estimation of performance measure. In this paper,
we present a new technique called Exact PA technique,
through which the performance measure can be accurately
estimated in the case that the discrete parameter such as
the buffer storage is perturbed. This result is obtained
from the special structure of tandem queueing networks
w.r.t. the buffer storage.

The proposed exact PA technique will be shown to
be an on_line algorithm in a sense that the exact
performance measure can be estimated only with the
observed data. Most PA tcchniques are off_line methods
since they require a little of future information to predict
interactions between servers. The on_line PA technique
seldom exists. In [6], the on_line PA technique w.r.t.
the buffer storage was studied for the system with only
a single server(G/G/1/T). This on_line PA technique does
not generally generate the exact estimation and cannot be
applied to the tandem queueing network.

The Exact_PA technique will be utilized to the
optimal buffer storage problem. In [1], an optimal buffer
storage was obtained from a gradient technique in which
the gradient is estimated from the conventional PA
technique under the strong conditions that the sum of
the buffer size is fixed and the cost per unit buffer
storage in all servers is identical. The Exact_PA technique
can be also utilized to estimate the gradient. But the
gradient method based on the conventional PA
technique[1-3]as well as the Exact_PA technique requires
the careful adjustment of weighting factors to guarantee
convergence. Since the exact estimation of the performance
measure can be obtained, we suggest a gradient-free
search algorithm utilizing Exact_PA technique, which is
simple and easily implemented. The conventional PA
technique can be hardly applicable for the gradient-free
search algorithm since it has the large estimation error.
In addition, the suggested optimization algorithm does not

conventional



require the strong conditions in [1].

This paper is organized as follows. In Section 2,
discrete event dynamic equations and basic properties of
Full Out(FO) and No Input(NI) with respect to the
buffer storage in the tandem queueing network are
presented. In Section 3, the new perturbation rules for
the buffer storage are derived. The exact PA algorithm
is presented to estimate the exact performance measure.
In Section 4, the proposed PA technique is applied to
an optimization problem to obtain the optimal buffer
storages. In Section 5, numerical examples are shown.
Conclusions are given in Section 6.

2. BASIC PROPERTIES

Let the event be the customer’s departure from a
server. The i-th server S, is always in one of three
possible states : 1) busy ; 2) blocked, also called Full
Output(FO) ; 3) idle, also termed No Input(NI). Let B,
be the buffer size of S. The open tandem queueing
network with finite queues such as a production line is
shown in Fig. 2.1.

B, B, By
o — O -

S, S, Sy
Fig. 2.1 Tandem Queueing Network

It is assumed that each server has no internal
buffer and the initial number of customers in the buffer
of each server is 0. It is also assumed that each server
is a error-free machine. That is, the breakdown of the
server is not considered. For the operations of the
tandem queueing network, the following is assumed in
the case that the service of the customer is completed
at the server S. If the next server, S, is free or idle,
the service for the customer begins immediately at the
server S, 1 If the server S+x is not free and the buffer
storage in the server S, is not full, the customer is
waiting in the buffer storage of the server S, . If the
buffer storage in the server S, is full, the customer is
waiting in the server S. The j-th customer in S,
denoted by C becomes the jth customer in S_,, i.e.
G,y in the tandem queueing network. Let d;; be the
departure time of C; from S and d; be the service
completion time of C » and let b(l) be defined to
indicate the server who blocks the i-th server S§.
Generzally, b(i) is greater than i. Consider the case that
the customer C‘.l,. departs from the server S. H the
blocking does not occur in the server S, and the
blocking occurs in the server S(that is, the buffer storage
of S, is full when C departs from S), b(i) is (i+1).
If the blocking does nol occur in the server S ; and
the blockings occur in three servers §,,,, S, and S(that
is, the buffer storage of S, S, and S_, are full
when C; departs from §), it can be considcred that the
blocking in S, occurs due to S,,. Thus b(i) is (i+3).
General conditions for Full Out(FO) and No Input(NI)

with respect to the buffer storage in the tandem

O__
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queueing network are given as follows:

Fact L(FO case) B od, < dyyporiennon
T(i,m)= §™ B,), FO aso occurs.

Fact 2(NI case) : If d, ;, > d,, ,.,, NI occurs.

Due to the interaction of customers in the tandem
queueing network, the following discrete event dynamic
equations can be formulated.

diy = diy, *ot, ; NI case (PA)]
di o oty ; otherwise
di = dyyetae e ; FO case, i<b(i@2)
d, ; otherwise
where t,, is the service time of C "

The FO time duration, which varies due to other FOs
occurred in other servers, is summarized in the following.

Fact 3.(FO Time Duration) : In the case that d; is

lc.ess than .dw)_.r.r(m’m»where i<b(i), the i-th server's FO
tu;)e) duration (db(i),.ﬂ(m.w» d) is given by (div14m,,, -
=N

This fact is proved as follows. Because the departure
of C].,j is .blocked by the effect of Ch(i),}-'r(i 160’ all
customers in servers, S, m=it+1,..b(i)-1, are also
blocked. At the departure time of Cb(i)j—T(iHb(i))’ this
blocking is dissolved. Thus the departure time of

is the departure time of C

Cb(i)-ly'rT(i* 1.6(i)-1) B(i), - T(i+1,b(1))

By the similar method,

db(i)vl,}-T(i+1,b(i)-l)= qd

Ay 1 0y = oi)-2,§- T+ 1,60)-2)

Thus, Gorjme = G jrpersoy . .
The above facts and discrete event dynamic equations

are used for deriving the exact PA technique in the

next section.

3. PA TECHNIQUE FOR THE PERTURBED BUFFER
STORAGE

The PA technique with respect to the buffer storage
will be presented for the case that multiple discrete
parameters are perturbed at the same time. If the buffer
B, of the server S, is perturbed by AB, it directly
changes the customer’s departure time of S . That is,
the perturbations are generated in the S ;. And these
perturbations are propagated to other servers according to
some rules which will be described later. The performance
measure such as the throughput can be changed in this
case. For the general queueing networks, the exact
estimation of the performance measure is difficult due to
the complex interaction of the events during the period
of FO or NI. For the tandem queueing network, the
exact estimation of the performance measure can be easily
obtained due to the special properties of the tandem
queue.

For the perturbation rules,
terminologies:

we define the following



NI’s time duration just prior to the service
of Ci_j in the nominal sample path.

NI’s time duration just prior to the service
of G, in the perturbed sample path.

FO’s time duration after the service of C, 4
was just completed in the nominal sample path
: FO’s time duration after the service of CiJ
was just completed in the perturbed sample
path.

A.. : the amount of perturbationsin the departure
time, accumulated in S, until the customer Ci‘j
departs from S,

the amount of perturbation in the departure
time, generated in §; at the departure time of
C.

LD N

PNIT,;

FOT, ..

PFOT,,

In the definition of A, ; and 9, ‘amount of
perturbation in the departure time" means the difference
between the departure time of the customer C in the
nominal path and the departure time of the customer C

in the perturbed path. The departure time of the

customer C,J in the perturbed path is denoted by d* G
which is
d’, , = ;Y 4. 3.1)

In order to estimate the exact perturbed departure time,
Ai'j must be estimated exactly, which can be derived
from

8,,,=(PNIT, ,+PFOT, )~ (NIT, , +FOT, ;) (3.2)
AI.J-AJX+8I.J’ 4, =0 (3.3)

It will be shown that Eq.(3.2) and Eq.(3.3) are
the exact amount of perturbation generated and
accumulated at the departure time of C Suppose that
the B, of the server S, is pcrturbed by AB,,,.
First, we will consider the perturbed service completion
time of the customer C Since the departure time of
the customer C in the perturbed path, d’, ; depends on
the departure nme divrm, a8, of the customer Cierj
B, a8 ., the service completion time of C in the
perturbed path, d’l must be obtained in order to
compute d'... Fig. 3.1 shows the comparison of the
service completlon time of the customer C,, with the
departure time of the customer C in the perturbed
path.

e A

i+

.
d’i.-8,,,-08,,,

Fig. 3.1 Comparison of interactions between
two adjacent servers in FO case

If &, ; is less than d’iv158,, 08, the FO occurs in the
penurbed path. On the other hand, if g’i'i is not less

than d’iv18,,48,,, the FO does not occur. From Fig.
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3.1 and Eq. (3.1)-(3.3), the perturbed service completion
time of C”, _,.,, is given by (d At PNITi'j -
NITJ - FOT, ) Next, the actlvmes of customers in the
server §; will be considered. The perturbed departure time
of the customer C  , d';, is equal to the nominal
departure time, d, ,, of the C“ since the initial
number of customers in the buffer of each server is
zero. The perturbed service completion time of Ciyz,
da’,,, is given by (d,, + A, + PNIT, ,-
NIT, ,-FOT, ,). NIT,, and FOT,, are the known
values in the nominal path and PNIT is obtained
from (d- t-1,2-47,,,), where &’ , and d’,  are
the values calculated in the previous step. From Eq.(3.1)-
Eq.(3.3), we obtain that

d’, ,~ d4’,, + PFOT, ,
where PFOT,, is given by (d’i+1,2-8,,,-s8,,, _’,'2)
if a’ i+1,2- Bl‘i'mlﬂ is greater than d' The

d’ ey, 2- Biet =814y is also obtained in the prev:ous step.
Thus d’, , is derived exactly. Perturbed departure times
of other customers d’ 134’ g are calculated exactly
by the similar method. Because the exact amount of
NIT, ,, FOT,,, PNIT, ,, and PFOT, , can be
obtained from the above procedure, 6‘”. is obtained from
Eq.(3.2). And Eq.(3.3) consists of the amount of the
perturbation in the departure time(A'i_l), accumulated
until the previous customer C, ;- departed from the
server S, and the amount of the perturbation in the
departure time(b‘i'j), generated at the departure time of
the customer C, ;. Thus, Eq.(3.3) can be written
equivalently as .

]
EN
From above equations, 4;; can be obtaired. As can be
seen above, the departure time of the customer is
computed only with the observed data.

In the perturbation amount of the departure time,
._,’ of Eq.(3.2), NIT and FOT are known values but
PNIT, ; i and PFOT,; o are unknown values Thus PNIT, ; and
PFOT have to be obtained. First, we will obtam the
perturbatlon accumulated in the preceding server, S,
when the succeeding server, S,, has the perturbed buffer.
The perturbation rule applied for this case will be called
“Perturbation rule A" and is as follows.

4,

Let us consider the FO case in the perturbed path.
The perturbation of the buffer storage has much effect
on FO. Though the customer C_ ,; meets the FO in the
nominal path, this FO can be eliminated or its time
duration is varied due to the AB, in the perturbed
path(the typical example of the elimination is the case
of the first FO for the positive AB). And, though the
customer C, . doesn’t meet the FO in the nominal path,
the FO can be crcated due to the AB, in the
perturbed path. The amount of perturbations due to FO
is obtained from (PFOT,_, , -FOT where
PFOTI_ is obtained from

|—1.J)’
1)



Fd ;* A, <dirss + Agsm, then

PFOT,_, , = di.s-B;-a8; + &.j-B-a8, - di-l,j - B
else

PFOT,., , = 0 G4
where A, . is defined by (4_, , ,+PNIT _, -FOT_
1 NIT Ly )

Next, let us consider the NI case. From the similar
way to the FO case, the amount of perturbations due
to NI is also obtained. While C, ,j meets FO in the
interaction between S ; and S, Cl” meets NI in the
interaction between Sl_ and S.. The amount of the
perturbation due to NI is obtained from (PNIT

NIT., ), where PNIT is derived from

-1,
-1, }

o, ¥ A g > dy; A, then
PNIT ., ; = dip 0 ¥ Appe - di-l,j - A
else

PNIT,,

If d
11,

-0 (3.5)
Due to the perturbed buffer storage, it is shown that
the NI and FO can be eliminated/created or their time
durations can be varied. As C.,. can meet both NI and

-1,j
FO, the amount of the perturbation occurred at the

departure of Ci_”. is

8y = (PNIT,, ; + PFOT,_, ) (NIT, , + FOT,, )
Finally, the perturbation accumulated in the server S

until the customer C, departs from the server S,

- = AL 8L,

So far, we have analyzed the interaction between two
adjacent servers when the succeeding server has a
perturbed buffer storage.

Secondly, we will obtain the perturbation accumulated
in the preceding server, S, ,, when the succeeding server,
S,, has no perturbed buffer The perturbation rule applied
for this case will be called "Perturbationrule B".  This
perturbation rule is similar to the Perturbation rule A
discussed above and is summarized as follows.

1) FO case
fd,, * Ay, < das + Ags, then
PFOT,.,, = di-s, + &g - dyyy -
else

PFOT,., , = 0
where A, is defined by

(A(—l.J~1+PNITk-l.J_FOTk-l.J_NITk-X.J) .

2) NI case
ez, 00t Beg e > gyt 4., then
PNITk-l,J = dk-z,m + A(-z.m - dk-l.} -4
else

PNIT,.,., = 0

Ak-l,j

If 4
1.1,)

& =

k=1,
1.

(PNIT,_, ; + PFOT,_, ;)-(NIT_ 1 YFOT )
= By *G

WL
It is noted that the perturbation rules for the buffer
storage are utilized in the preceeding server between two
adjacent servers.  Conceptually, Perturbation rule A
corresponds to the combined rule of the conventional
generation and the conventional propagation rules.
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Perturbation rule B corresponds to the conventional
propagation rule.

To validate the above rule, the following examples
are considered. Let’s observe the activities of customers
in the tandem queucing network with 3 servers in a
model of Fig. 2.1, in which each buffer storage size(B,,
B,, and B,) is 1. First, an example for the positive
perturbation is considered. The nominal sample path of
the above system is shown in Fig. 3.2. The perturbed
path of AB,=1 is shown in Fig. 3.3. The a is the
i-th customer’s arrival time from the external environment,
the dot(.) or the blank represents NI or FO state, —
is denoted by the service completion of customers and

1L represents the one unit time. To simplify the
notation, a,, , dl ge; and d’ .. are replaced by
a,, d,  an k>1 respectively. To simplify the

analysis, it is assumed that

a, = d,, =0 and A, =4, =4, = 0.

In the nominal path, the FO time of the customer

C FOT is 1 and the NI time of the customer

Coh NIT,is 0. In the perturbed path, the perturbed
le time of the customer C,,, PNIT, , is O by the rule
(3-5). And the perturbed FO time of the customer C »
PFOT, ,, is 0 since the service completmn time of C,,
in the perturbed path, d’, ,, is greater than the
perturbed departure time of C2 o d7y . Thus A, , is
-1 by Eq.(3.2) and Eq(3 3) The perturbed dcparture
time of the customer C, , \.;» is 5 by Eq.(3.1). By
a similar method, the perturbed departure time of C,,,

1,10

C,y and C,, ie d’, ,, d’,, and 4, ,, are 7,
117and 13. respectively. A 20 A, and 4, are 4, -
4 and -7, respectively. For the "customer st’ FOT, ,,

NIT, and PNIT,
the Service complenon time of C,

s are 4, 0, and 4, respectively. Because
in the perturbed path,

d’, g, is less than the perturbed departure time of C,,,
d’,,, the FO time of C,, in the perturbed path,
PFOT, , is 1 by the rule {3.4). Thus A, is -6 by

Eq.3.3) and 4, , is 20 by Eq.(3.1). By a similar
method, the exact "departure time of other customers in
the server can be also computed.

IR o T
(lll.l dIIZ dll,! d 4 d .5 d 6 (11‘1
SZ_J_J,L1..Lu_l_LH.IIIIillllllilllllli. —
d; o dy, dlz.z df.s d,, dz 5 dz 8
S’ lIllllilli.L‘iLllllllillLl. 1 ,_I‘L_L‘L‘LJ_I_L
3,1 3,0 3.1 3.2 d!.!
Fig. 3.2 the nominal sample path
a, a, a, a a a a
R [ I
S_I_L.LLI_I_i._L_f_L_Ll_f_i....L_l_i.llllllllli ..... lLli
dl!,lld’l.f !i’l 4 dl"" dl't,u dlll.
I e T e e e B e S S
d’ 0 d‘ .1(},2,2 d’l.! dl'l.‘ dl’i,B ?120
S’ llllllilli.L_]lllllllillli.lllllll.Illlll\l
A7y, 4d%y,,d7y d7y, d7%y, A7y o d7y,
Fig. 3.3 the perturbed path (AB,=1)
So far, the example for the positive perturbation

has been considered.
We choose the throughput as the performance measure
of interest in this section, which can be defined as



TP = N/d_, (3.6)
where the L-th server is the last sérver in the tandem
queueing network and d . is the departure time of the
customer C, . The perturbation of the throughput, ATP,
resulting from AB, is easily obtained at the end of the

observation interval from
&P = N/(dy y*4, )

The presented perturbation rules are summarized in the
following algorithm for the general tandem queueing
network. AB is denoted by the row vector
(ABI,ABZ,...,A ). Assume that the total number of
servers 1s N. e tandem queueing network is started
empty. That is, all the buffer storages are empty in the
initial state. The total number of customers to be served
is M. The performance measure of interest in this
algorithm is the throughput.

Exact PA Algorithm For perturbed buffer storage AB

~ N/d . 3.7

1) j =1, PNIT, , =4, =d’, | =0 ;
i=12,...Nand | < 0.

2) Calculate the amount of accumulated perturbations and
the perturbed departure time.
Fori = 12,..,N

A,‘J =_Ad1_, (NIT,, + FOT, ;) + PNIT,
d 0 B =

3) Calculate the FO’s time duration in the perturbed
path

For k = N,...... 2
if d7 . < d’x,s-8,-a8,, then
- ‘F‘t‘éTk_ld = dk’k.lj-Bk~ABk N R

4) Evaluate the NI’s time duration in the perturbed path
(a7, , is the Ith arrival from the external
environment.)

For k = 1,2,.....N
if d’ ., > d’ ,, then
PNi’ILk.jol = é)k—l.j - dly
else
PNIT, ., = O.
S) If j = M customers, evaluate the performance

measures such as ATP of Eq.(3.7).
else j = j + 1 and repeat step 2) - step 4).

This PA algorithm is an on_line algorithm in the
sense that the exact departure time can be estimated via
the presented PA rule only with the observed data, as
seen in above examples. The exact perturbed departure
time of a customer is easily obtained from this on_line
PA algorithm. This PA algorithm can be applied to the
case that multiple buffer storages are simultaneousiy
perturbed since the suggested rules are utilized in several
servers. This exact PA algorithm will be validated by
several numerical examples in Section 5. In the next
section, the proposed PA algorithm is utilized to solve
the optimal buffer problem.

4. OPTIMAL DESIGN OF BUFFER STORAGE

The throughput and the cost of the buffer storage
are a function of the buffer storage. The larger the the
buffer storage size is, the more the throughput and the
buffer storage cost is. But the throughput tend to be
saturated as the size of the buffer storage approaches
some value.. The throughput is denoted by TP(B) and
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the cost of the buffer storage(ST) is assumed to be
given by

ST(B) = C BT

where B=(B,,..,By), C = (C,,..Cy) and C, is
the unit buffer cost of the server S;- The optimal buffer
storage must be determined to maximize the throughput
while minimizing the buffer storage cost. Therefore, the
performance measure(P) of interest in this section will be
defined as
P(B) = a TP(B) - ST(B) 4.1)
where ¢ is defined as a weighting factor between the
throughput and the buffer storage cost, ST(B). Thus the
optimal buffer storage is obtained by
max P(B). (4.2)

The vector B, denotes the vector B for the buffer

storage used in the nominal path. If the vector B, is

perturbed by AB, then from Eq. (4.1),
(M) = P(B+AB) - P(B;; (4.3)
= a ATP(AB) - ST(MB)
where  ATP(AB) = TP(B,+AB) - TP(B,) from

Eq.(3.7). Let B’ be the solution of Eq.(4.2). Ii AB® is
given by (B" - B), then it is easy to see that AB’
is the optimal solution of the following equation,

max{ o ATP(4MB)

all aB

- ST(M8) }. (4.4)

In optimization techniques, there are several methods
such as the gradient method and the gradient-free
method[11]. The gradient estimated by conventional PA
techniques has been utilized in  many optimization
problems. Also, the gradient estimated by the Exact_PA
technique can be utilized in the optimization problem.
But the gradient method based on conventional PA
techniques[1-3]as well as the Exact_PA technique requires
the careful adjustment of weighting factors to guarantee
convergence. The suggested gradient-free method can
guarantee convergence when the buffer capacity of each
server is finite and the performance measure, AP(AB),
with respect to the buffer storage is concave. The
suggested gradient-free method is especially better than the
gradient method in the sense that it guarantees
convergence while avoiding the complicated weighting factor
adjustement. And the rule for terminating the optimization
algorithm is derived from the concave property of the
performance measure, which is discussed later. The
suggested gradient-free algorithm is simple and easily
implemented since no gradient is necessary and the
concave property is utilized.

It is known that the throughput with respect to
the buffer storage increases monotonically but will be
saturated as the buffer size approaches a certain
value[9,10]. From the above property the throughput is
likely to have the concave property with respect to the
buffer storage in many cases. This tendency will be
demonstrated in  numerical examples discussed later. If
TP(B) is concave, the change of the performance
measure, AP(AB) of Eq. (4.3), can be shown to be
concave. This is possible due to the following fact. As
TP(B) can be given by [TP(B)+ATP(AB)], ATP(AB)

as thc concave property. AP(AB) in Eq. (4.3) has the
concave property as CB(AB) is an increasing function.

We present the following on_line optimization
algorithm for the optimal allocation of the buffer storage
by using the Exact_PA algorithm. Consider the sequence



{AB,} where all points in {AB,} are generated from the
suggested optimization algorithm and AB, AB. And
let y, AB. The direction dj(j=1,..,N), denotes a
vector of zeros except for a one at the j-th position. It
is assumed that AP(.) is obtained from the Exact_PA
algorithm and Eq. (4.3).

Gradient-free Optimization Algorithm with Exact PA

1) initial state :
Let d,,...,d; be the directions.
Choose a starting point AB,. Let y, = AB, and
k=j=1
2) obtain AP(y, + d) and AP(yj) from the Exact_PA
algorithm and Eq. (4.3).
3) ¥ AP(yj + dj) > AP(yj), let y,, =y + 4
and go to step 4.
obtain AP(yj - dj) from the Exact_PA
algorithm and Eq. (4.3).
if aP(y; - d4) > AP(y), let y,, = A
go to step 4.
else let y, , = Y; and go to step 4.
4 If j <N, j=7j+ 1 and go to step 2.
else if AP(y,,,) > AP(AB), go to step 5.
else stop. That is, AP(AB,) is greater than all
AP(AB, + di)(j=1,..N). Thus, AB, is the
optimaf solution.
5) let AB,.. = y..,, and y, = AB__ ,
) and k = k+1 3nd j =1, and go fo step 2.

In the optimization problem utilizing the gradient
method, weighting factors should be carefully chosen so
that it guarantees convergence. In this algorithm, no
weighting factors exist. The advantages of the algorithm
presented are its simplicity and ease of implementability.

else

-dj and

Because the Exact_PA technique provides the exact
estimation of the performance measure, the above
algorithm gives the global optimal solution if the

performance measure of interest is concave. Otherwise,
this algorithm may give the local optimal solution. We
consider several numerical examples for the validation of
the above optimization algorithm in the next section.

5. EXAMPLES FOR Exact_ PA ALGORITHM and
OPTIMAL BUFFER DESIGN

In Example 1, it will be shown that the estimated
value by the Exact PA technique is the same as the
actual value which is obtained by the brute force
simulation. The Exact_PA method will be shown to be
better than the Finite Perturbation Analysis(FPA)
method(5]. It will be also shown that the throughput in
this example has the concave property with respect to
the buffer storage.

Example 1. Nominal System Model :
number of servers : 3

L 5 5, 5,
buffer storage size : 1 3 2
_mean service time : 1 2 3
mean arrival time : 1

The number of customers served in this example is
9000. The service time of each server is assumed to be
exponentially distributed. The nominal path is generated
by the simulation with the above parameters. Fig. 4.1
shows the perturbed throughput, ATP, obtained from the
Exact_PA method and the FPA method when the buffer
storages, B, and B;, are simultaneously perturbed. From
this figure, we can observe that the actual value can be
obtained via the Exact_PA algorithm and that the
throughput has the concave property with respect to the
buffer storage. As can be seen in the Fig. 4.1, the
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Exact_PA method is better than the FPA method. The
Exact_PA method takes almost the same simulation time
as the FPA method. But the Exact_PA method provides
the exact value of the performance measure while the
FPA method provides the estimated value of it.

Next, two numerical examples will be considered
for the validation of the presented optimization algorithm.
As in [1], the same cost is assigned to each buffer
storage in Example 2. The number of customers to be
served in these examples is 9000. The service time of
each server is assumed to be exponentially distributed.

Example 2. Nominal System Model :
number of servers : 4

S, S, S, S,
buffer storage size : 1 1 1 1
mean service time : 2 3 2 3
mean arrival time : 1
buffer cost,C, : 3 3 3 3
weighting factor for TP,a 1000

The nominal path is generated by simulation with the
above parameters. From the presented optimization
algorithm, the maximum AP and the perturbed optimal
buffer storage(AB") are given as follows:

max(AP) = 58.16 and AB’,=0, AB',=3, AB’,=4

and AB',=5

(that is, B\=1, B,=4, B',=5 and B’,=6)
Fig. 4.2 shows the values obtained from the brute force
simulation when B,, B, and B, are simultaneously
perturbed. From the brute force simulation, the following
optimal buffer storages,

AB',=0, AB’)=3, AB';=4 and AB’,=5,(that is,

B',=1, B,=4, B’;=5 and B',=6)
are obtained. These values are identical to ones obtained
from the suggested optimization algorithm. In Example 3,
we will consider the case that the cost of each unit
buffer storage is different.

Example 3. Nominal System Model :
number of servers : 3

s 8 S
buffer storage size : 1 3 2
mean service time : 2 2 3
mean arrival time : 1
buffer cost,C, : 1 3 2
weighting factor for TP,a : 500

The nominal path is generated by simulation with the
above parameters. The maximum AP and the perturbed
optimal buffer storage(AB’),

max(AP) = 1.129 and AB' =0, AB’,=0 and

AB',=1,

(that is, B',=1, B,=3 and B',=3)
are obtained from the presented optimization algorithm. In
the case that B, and B, are simultaneously perturbed,
the values obtained from the brute force simulation is
shown in Fig. 4.3, from which we can get the optimal
buffer storage,

AB' =0, AB,=0 and AB’,=1

(that is, B',=1, B,=3 and B',=3).
This simulation validates the suggested optimization
algorithm.

Above examples show that the optimal buffer storage
is obtained from the proposed optimization algorithm
regardless of the cost of each buffer storage and the
buffer storage size.



6. CONCLUSION

In this paper, we have attempted to provide the
exact perturbation analysis technique with respect to the
buffer storage and to solve the optimization problem via
the suggested perturbation analysis technique in the
tandem queueing network.

Discrete event dynamic equations and basic properties
of Full Out(FO) and No Input(NI) with respect to the
buffer storage in the tandem queueing network are
presented. The perturbation rules with respect to the
buffer storage are derived from these basic properties and
dynamic equations. The on_line Exact_PA algorithm is
derived from these rules. The performance measure, such
as the throughput, is obtained from the proposed exact
perturbation analysis algorithm for the case of the
perturbation of muitiple discrete parameters. This on_line
exact perturbation analysis algorithm can be easily
implemented. The optimal buffer storage problem is
presented by introducing a performance measure consisted
of the throughput and the buffer storage cost. It is
shown that the optimal buffer storage can be easily
obtained from the proposed gradient-free optimization
algorithm regardless of the buffer storage cost of each
server and the size of the buffer storage. The Exact_PA
algorithm and the gradient-free optimization algorithm are
validated by numerical examples.

The global optimal buffer storage is guaranteed in the
suggested pgradient-free optimization algorithm if the
throughput is concave. Otherwise, it may give the local
optimal buffer storage. There are many cases in tandem
queueing networks, where the throughput is believed to
be concave with respect to the buffer storage. It is
necessary to investigate general conditions under which the
throughput is concave.

The Exact_PA technique may be extended to
general queueing networks with respect to the buffer
storage. And the method suggested in this paper may
also be applied to the performance measures with respect
to other discrete parameters such as the number of
SErvers.
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