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ABSTRACT

A parameter space approach for robust control system
design is developed by reducing several design specifica-
tions to sign definite conditions. It is shown that the
gain and phase margin constraints for the parametric per-
turbed plant hold if and only if the four Kharitonov sys-
tems satisfy the margins. On pole location, it is shown
that D-stability of convex combinations (1 —t)p(s)+tg(s)
can be determined by the coefficients corresponding to
p(s) and g(s) based on the sign definite condition. We
show a method of Pl-type robust control system design as
a useful example.

1. INTRODUCTION

Multi-objective problem, that is, to keep several speci-
fications simultaneously, is a main concern in the control
system design. However, the problem is generally hard to
solve analytically and a parameter space design method
is one of the useful tools to treat this kind of problem.
Therefore, we have proposed a method of control system
design by a parameter space approach based on sigi def-
inite condition with numerical calculation and symbolic
manipulation {1]. By using the sign definite condition,
several important design specifications can be treated uni-
formly. The design scheme is as follows:

1. determine the structure of the controller and select
the parameters, e.g., PI-compensator (K + T's)/s, K
and T are the parameters.

. reduce the specifications to the corresponding sign
definite conditions.

. compute the admissible regions in the parameter
space for each specification.

. superpose the regions and take the parameters in the
intersections.

In the specifications, robustness have been paid lots of
attention in recent years. It have been shown that the
following specifications, which are often used as indices of
robustness of systems, can be reduced to the sign definite
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conditions for fixed plant [1] : gain margin, phase mar-
gin, H,, norm constraints, and frequency restricted norm
constraints. For the plant with parametric perturbation,
H,, norm constraints and frequency restricted norm con-
straints have been investigated (2] [4] and these constraints
have also been reduced to sign definite conditions [4].

In this paper, we investigate the gain and phase margins
and pole location for the parametric perturbed plant. By
using our design method, these constrains can be solved
for the parametric perturbed plants with other specifica-
tions.

2. SIGN DEFINITE CONDITION

Definition 1 A function f(z) : R +» R is sign definite
in the interval = € [a,b],a < b, denote f(z) € Ng[a,b]
hereafter, if f(z) preserves the sign in the interval, or does
not cross zero in the interval.

Remark: The sign definite condition f(z) € Ny[a, b] can
be transformed to the condition f(z) € Ny[0, co] by the
bilinear transformation z = —(z—a)/(z—b). Then, if f(z)
is polynomial in z, the sign definite condition can readily
checked by the following Routh-Hurwitz type criterion:

Lemma 1 [7) An n-th order polynomial f(z) with real
coefficients is sign definite in z € [0, 00] if and only if

Vif(@)] =n (1)

holds, where V' is the number of sign changes of the most
left column of the Modified Routh Array defined by

("l)nfu (—'1)n—1fn—1 “fl fO
(=1y'nfa (-1)"Hn—1)fau =h
: - 2)
fo

Note that there exists Hurwitz type criterion [7].

It have been shown that H, norm constraint can be
directly reduced to the sign definite condition[4]. The fol-
lowing lemma is useful in order to reduce a constraint to

a sign definite condition and it will be used in Sections 3.
and 4..



Lemma 2 Consider simultaneous equation

{ hied

0
; 3)

where fi(w,t) and fa(w,t) are polynomial in w and t.
Then, this does not hold in w € R,t € [a,b] if and only if

f(¢) € Nola, 3] (4)

or
I € [a,b] s.t. 5
f(to) =0 and g(w, )]y € No[-00,00] ()

where f(t) and g{w,t) are defined as follows: without loss
of generality, we can assume the order of fi(w,t) cor-
responding to w is equal to or greater than the order of
fa{w,t). By using the Euclidean algorithm, we can elimi-
nate one of the variables and obtain f(t), that is,

fl(wvt) = ql(wyt)fZ(wyt)+f3(wyt)
faw,t) = q@w,t)fs(w,t) + fa(w,?)

(6)
fk(wvt) = g(wat)fk+1(wvt)+f(t)

We denote f(t) := Euc[fi(w,t), fa(w,t),w] hereafter.
If the order of g{w,t) w.r.t w is odd, the sign definite
condition (5) is not satisfied for every ¢t. Then, we have
more simple condition:

Corollay 1 If the order of g{w,t) w.r.t w is odd, where
g(w,t) is defined in the Lemma 2, then the simultaneous
equation defined by (3) dose not hold in w € R,t € {a, |
if and only if

f(t) € No[a, 8] (7)
holds.

Corollay 2 If the parity of the order corresponding to
filw,t) and fo(w,t) w.rt w is different, that is, the or-
ders are even and odd or odd and even, the simultaeious
equation (3) does not hold inw € R, t € [a,b] iff

f(t) € No[a, 8] (8)

holds.

proof: we can say from the definition of g(w,t) shown in
(6) that if the parity of the order of fi{w,t) and fa(w,t)
w.r.t. w are not identical, the order of g(w,t) is odd in
general. Then, Corollary 1 leads to Corollary 2

Note that if there exist f;(w,t) and f;(w,t) such that
the parity of the orders are distinct each other and the
order of g*(w,t) w.r.t. w is even. Then, with small per-
turbations €, and €, we can find out filw,t) = fi+te
and fa(w,t) ;= f3 + €; such that the order of §(w,t) w.r.t.
w is odd. From the continuity, this implies that g*(w,t)
have real roots in w since the order of g(w,t) w.rt. wis

odd.
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Figure 1: A Unity Feedback System (1)

J*f# o [ GE[T

Figure 2: A Unity Feedback System (2)

3. GAIN AND PHASE MARGINS

3.1 STABILITY MARGINS FOR FIXED SYSTEMS

We first define stability margins for the sake of clarify of
the discussion, Consider the open loop system G(s) shown
in Fig. 1 and suppose that the closed loop system is stable.
Then, the gain margin and phase margin are defined as
follows:

Definition 2 (Gain Margin) The open loop system
G(s) shown in Fig. 1 holds gain margin (Ym,v™) if
the closed loop system shown in Fig. 2 is stable for all
a € (Ym, 1) and aG(s) at a = v,, and ¥ reaches sta-
bility horizons, that is,

Ym = min{y|g,(s) has no zeros
in open right half plane}
M = max{y|g,(s) has no zeros

in open right half plane}

where g,(s) is the characteristic polynomial of the closed
loop system shown in Fig.2 defined by

4,(8) 1= yn(s) + d(s) 9)
In the same manner, we define phase margin.

Definition 3 (Phase Margin) The open loop system
G(s) shown in Fig.1 holds phase margin 0 < ¢ < 27
if the closed loop system shown in Fig.2 is stable for all
a:=e"0¢€0,¢), and g4(s) at & = e7®,8 = ¢ reaches
stability horizon, that is,

¢ = max{0|gs(s) has no zeros in open right half plane}

where gu(s) is the characteristic polynomial of the closed
loop system shown in Fig. 2 defined by

gs(s) = en(s) + d(s) (10)

Gain margin and phase margin constraints can be re-
duced to sign definite condition as follows [1]: Consider a
rational function G(s) and decompose G(jw) as



where g,(w), gj(w) and d(w) are polynomials in w. Using
these notations, we obtain the following theorems.

Theorem 1 G(s) holds gain margin (ym, YM) iff the si-
multaneous equation defined by

{fl(wv ) = g:(w)

t —-dw)t=0
fa(w) = g(w)=0

(12)
is not satisfied in w € R, t € [~1/7m, —1/¥M].

Note that since the parity of the orders of fi{w,t) and
f2(w) w.r.t w are different from each other, from the Corol-
lary 2, the gain margin constraint can be checked by only
one sign definite condition

fg(t) € NO["I/'Ym)_l/’YM] (13)

where

f4(t) := Buc[fi(z,w), folw),w] (14)

Theorem 2 G(s)' holds the phase margin ¢ iff the simul-
taneous equation defined by

{fl(w) = gi(w)+g(w) - d*(w) =0
folwt) = go(w) —dw)t =0

is not satisfied in w € R,t € [—1,cos(—7 + ¢)].

(15)

From the Lemma 2, we can see that the phase margin
constraint can be reduced to the sign definite conditions.

3.2 STABILITY MARGIN BOUNDS FOR INTERVAL
SYSTEMS

Again consider the unity feedback system shown in Fig.
1, where the open loop system G(s) is the interval rational
function defined by

2
=
™

bist
Tds) T — i i» @i, Or d
G(s) d(s) T as’ a; € [a, @], by, : fixe (16)

Then, we obtain the following Theorem:

Theorem 3 The open loop system with parametric per-
turbation defined by (16) holds gain margin (ym,Y™) and
phase margin ¢ if and only if the fired 4 plants

n(s)
k,-(s)
hold the gain margin (Ym,¥™) and the phase margin ¢,

where k;(s) represent the four Kharitonov polynomials as-
soctated with d(s) denoted by

Gi(s) = i=1~4 (17)

kl(s) = Q0+61s+62sz+g333+...
ka(s) = ap+as+@s®+azsd -
i+ a 2 3 (18)
ka(s) = Go+ a8+ a5 +azs’+ -+
ke(s) = T+ as+agsi+azs+e

proof: Though we will only prove for the phase margin
constraint, the proof for the gain margin constraint is car-
ried out in the same way.

Necessity is trivial. By using contradiction, we will
proof the sufficiency. Assume that the four Kharitonov
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systems (17) hold phase margin ¢ and there exists a sys-
tem G*(s) := n(s)/d*(s) of which phase margin is ¢* s.t.
Pt < ¢.

By following the definition of the phase margin, this
implies that the characteristic polynomial of the closed
loop system associated with the four rotated Kharitonov
plants defined by

ai(s) i= e n(s) + ki(s) (19)

is Hurwitz and the characteristic polynomial of the closed
loop system associated with e’*' G*(s) defined by

q*(s) := & n(s) + d*(s) (20)

is not Hurwitz. Since this characteristic polynomial of
the closed loop system associated with the rotated sys-
tem e*"G(s) is the interval polynomial with complex co-
efficients, where the imaginary part is fixed, this contra-
dicts Kharitonov theorem with complex coefficient (see
Appendix).

4. POLE LOCATION

In control system degin, it is useful to locate the roots
of the characteristic polynomial in a specified region. In
this section, we will show that the pole location can be
reduced to sign definite conditions.

4.1 POLE LOCATION FOR FIXED PLANT

We here focus on the domain D € C of which the com-
plementary set D := C — D can be expressed as

D= {z(w,t) +jy(w,t) € Clw e Rt € [t,7]}  (21)
where z{w, t) and y(w, t) are rationals in w and t. A wedge
shape region and inside of a circle are in the class of the
domain D, since for the wedge shape region, z + 7y € D
can be expressed as

{; D om(w_t) “ERtelboo]  (22)

Im,

f,tanf =m

Figure 3. a wedge shape

For a circle, ¢ + jy € D can be expressed as

(2 4+ w? — 1)
(t- 1P 4w WER, te0,o0 (23)
V5 -1+
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Figure 4: inside of a circle

Let us consider how to assign all roots of a polynomial
p(s) in the specified region D € C. This is equivalent to

p(s) #0 YseD (24)

where D denotes the complementary set of D in C. In
this case, p(s) is called D-stable. Then, the pole location
problem is stated as follows:

{ pr(z,y) =0

ey =0+ PE) =iz y)+pi(my) (25)

donot holdin s =z + 3y € D.

Then, we obtain the following theorem:

Theorer 4 A polynomial p(s) has all roots in D of which
complementary set D is defined by (21) iff

{P,(w,t) =

P (w,t)
Pj(w,t) :

i

where { p,(IE, V)

(26)
do not satisfied in w € R,t € [t,t], where p,(z,y) and
pi(z,y) are defined by (25).

Applying Lemma 2 to the condition (26) in Theorem 4
the pole location constraint for fixed plant can be checked
by sign definite conditions.

For example, consider to determine whether the all roots
of polynomial p(s) defined by

p(s) = 2+45+35°+5° (27)

are in the wedge shape region D defined by (22) with m =
1.5 and b = —0.2. Based on sign definite condition, this
can be check as follows:

Decompose
p(sls € D) = p(w+m(w—1t););w € R,t € [b,00]
= Pr(w,t) + jPj(w,t)
(28)
where
Pr(w,t) = —5.75w%+ (=3.75 - 9t)w?
+(4 -9t — 3w + 2 — 32 (29)
Pj(w,t) = 1.1250%+ (9 - 3.75t)w?

+(6 + 6t — 4.5t2)w + 4t — ¢°

By following Theorem 4, all roots are located in the region

D iff
Pr{w,t)
{ Pj(w,t)

0
0

]

(30)
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pr{(e(w,t), y(w, 1))

do not hold in w € R,t € [b,00]. With Euclidean algo-
tithm, we can eliminate w from Pr(w,t) and Pj{w,t) and
obtain

fp(t) := Euc|Pp(w, 1), Pj(w,t),w] (31)
With the linear transformation = =t — b, we obtain
fol@) = fo(z +b) (32)

of which the numerator is 15th order polynomial in z.

Since V[numerator of f,(z)] = 15, Lemma 1 leads
fo(z) € Ng[0,00] and this implies that f,(t) € No[b, o0].
Hence, we conclude that all roots of (27) are in the wedge
shape region D. See Fig. 5

4.2 POLE LOCATION FOR INTERVAL SYSTEMS

On the pole location for the parametric perturbed sys-
tem of which coefficients are polytope in the coefficient
space, it is important to check the D-stability of a convex
combination of polynomials [8]. In this subsection, it is
shown that the D-stability condition can also be reduced
to the sign definite condition. Assume that the boundary
8D can be expressed by one parameter w as

D :=n{w)+s(w), weR (33)

Consider the convex combination associated with two
polynomials p(s) and g(s) defined by

f(s) = (1 - t)p(s) +tq(s);
and decompose f(s) at s = p(w) + 76(w) € 8D as

fn(w) +2£w)) = {(1-t)pr(w) +tg-(w)}
+1{(1 ~ )p;(w) + tg;(w)}
= fi(z,t) + 1fi(z,t)

tel0,1] (34)

(35)

where

p(n(w) + 7¢(w))

pr(w) + 19, (w)
g(nlw) + 26(w)) =: (36)

gr(w) + 7g;(w)

Then, by following the continuity of the roots of the
polynomial w.r.t. its coeflicients, we obtain the following
theorem.

Theorem 5 Consider the domain D defined by (33).
Then, the polynomial f(s) defined by (34) is D-stable off
the following two condition are satisfied:

1)  p(s) or q(s) is D—stable

fr(w1 t) =
2) { fj(wvt)

where f,(w,t) and fi{w,t) are defined by (35).

g do not hold for w € R,t € [0,1]

i

By applying Theorem 4 and Lemma 2, Theorem 5 can be
checked by sign definite conditions.

For example, consider to determine whether the all roots
of the convex combination fi(s) = (1 —t)p;(s) +tpi(s),t €
[0,1], where

2+4s+3s7+ 3
12.75 4 16.255 + 7.52 + 53

p(s) :

a(s) (37

i



+:roots of fz(s
-2 1" omroots of fi(s
0:1'00tslof p(.‘:‘

-3 -2.5 -2 -1.5 -1 -5 Re. 0

Figure 5: pole locations

are in the wedge shape region D defined by (22) with m =
1.5 and & = —0.2.. From the example in the subsection
4.1, we see that p;(s) is D-stable. Since the boundary is
expressed as

D :=z+m(z+b), z€R (38)
then, we obtain

filz +m(z +0)) = frlw,t) +2fi(w,t)  (39)

where
fr(w,t) = ~5.75w3 + (~6.45 — 5t)w?
+(1.03 + 8.65¢t)w + 1.73 + 10.39¢
filw,t) = 1.125w% + (7.875 + 12t)w?
+(7.395 + 20.775t)w + 1.173 + 3.675¢
(40)
With Euclidean algorithm, set
fp(t) == Buc[f.(w,t), fijw,t),w] (41)
and define .
folx) = f’((ﬁ-—l) (42)

Since the order of the numerator of f,,(:c) is 11 and
V[numerator of f,(x)] = 11, Lemma 1 leads that f,(z) €
N[0, 0] and this implies that f,(¢) € No[0,1]. Then,
from Lemma 2, we see that

flwt) = 0
{mz,t) = 0 (43)

do not hold for any w € R and t € [0,1] Hence, we con-
clude that all roots of f1(s) are in the wedge shape region
D for every t € [0,1]. See Fig. 5

By following same scheme, we can find out that the
convex combination fo(s) = (1 —t)pa(s) +tpa(s),t € [0,1],
where

pa(s)
)

gas e (49)

14.43 + 13.81s + 6.5% + §°

is not D-stable. (see Fig. 5)

-?_—‘ C(s) [ P(s) F

Figure 6: a PI type unity feedback system

5. DESIGN EXAMPLE

In this section, we give an design example for a Pl-type
feedback control system shown in Fig. 6 with parametric
perturbed plant P(s) and PI-type controller C(s), where

v
D
I

o @ € |e,a]
Kr+ Kps (45)

S

C(s) =

Our aim is to obtain the parameters K; and Kp which
satisfy the following robust stability property under para-
metric perturbation a € [a,@].

1. the phase margin is lager than ¢.

2. the complementary sensitivity function 7'(s) satisfies
the following norm constraints:

“T(s)”[wg.oc] <mn , ”T(s)“[(),wf] <72 (46)

where

K+ Kps

 _PLIC)
T T (Rr—a)s 1

T 14 P(s)C(s) =

(47)

and ¢ = 1,@ = 4.5,w; = 20,71 = —10dB,v, = 15dB,

¢ =nx/6.
There are only two Kharitonov systems
L Ki+Kps K+ Kps
Gl(s) = —;EQ—S G2(S) = 32 ——ET (48)

associated with the open loop system. From Theorem
3, phase margin constraint is satisfied under parametric
perturbation iff the two Kharitonov system defined by (48)
hold the constraint.

From [4], the two norm constraints (46) can be decom-
posed as sign definite condition.

By using symbolic manipulations and numerical calcu-
lations, we obtain admissible region shown in Fig. 7 By
taking parameters Kp and K in the intersection, e.g.
Kp = 6.2, K; = 7.0, we can satisfy all all constraints.
(see Fig. 8, 9)

6. CONCLUSION

we have investigated gain and phase margin constraints for
the parametric perturbed system and it have been shown
that the stability margins are bounded by the Kharitionov
systems. Pole location is also investigated and it have
been shown that this constraint can be reduced to sign
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Figure 7: admissible parameter space

Im.

—-20

.Figure 9: gain plots of T'(jw) for a = 1,2, 3,4,4.5
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definite conditions. In addition, it have been shown that
the D-stability condition of the convex combination cor-
responding to two polynomial can be reduced to a sign
definite condition. Combining the parameter space design
method, we can satisfy the stability margin constraint for
the parametric perturbed plant by a PI-type compensator
with other specifications.

Finally, we wish to express our appreciation to Prof.
S.P.Bhattacharyya for his useful comments on our results.
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APPENDIX

Theorem 6 [Kharitonov thorem with complex co-
efficients)

Let P := {p(s)} is a interval polynomial with complez
coefficients, where

n

p(s) == Z(ak +]bk)sk (49)
k=0
a; € [gk,ﬁk] b € [I_)L.,Ek] (50)

Then, the all member of P are strictly Hurwitz if and only
if the following eight complex case Kharitonov polynomials
kci(s),i = 1 ~ 8 associated with P are strictly Hurwitz

proof: see e.g. [6].

Remark: If the all complex part b, are fixed, the inter-
val polynomial with complex coefficients defined by (49)
is urwitz if and only if the four polynomials corresponding
to real coefficients case are Hurwitz.



