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Analytic Model for Hysteretic Behavior
of Reinforced Concrete Members
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ABSTRACT
Mathematical hysteretic model has been developed to analytically reproduce the experimen-—
tal hysteretic behavior of reinforced concrete members. This new model(2,3) is a rational si-
rulation of the physical response characteristics of reinforced concrete member and better
suitd for their nonlinear structural analysis, which are characterized by following important
hysteretic behaviors: stiffness degradation, strength deterioation and shear effect. Numeric-
al examples are presented to illustrate the capabilities between experimental and analytic

response. The reproduction of hysteretic behavior of RC members appears be sufficiently ac-
curate,

1 INTRODUCTION

The accurate prediction of the nonlinear behavior of reinforced concrete frames subjected
to cyclic loading requires a mathematical model of reinforced concrete frame members. In this
paper, the mode!l of Meyer(8) is presented together with various enhancements. This model con-
siders the effect of stiffness degradation, strength deterioration, shear and axial forces., A
significant improvement is to reflect the strength deterioration, which is assumed to commen—
ce with the first exceedance of the yield moment and accelerates with each inelastic loading
cycle in proportion to the amount by which the yield deformation is being exceeded. This mod-
el leads to analytical response predictions, which compare very well with experimental resul-
ts and therefore can be considered to be better suited for dynamic response calculation than
other previously proposed models,

2 Material Constitutive Laws
2.1 Concrete

It is well known that concrete exhibits different behavior in tension and compression.
The tensile strength can be ignored under cyclic loading, because most of it is {ost due to
cracks caused by service loads. The stress-strain curve for plain concrete has been idealized
by many researchers. Herein, Roufaiel and Meyer’s refined curve(8) has been adopted with some
mninor modifications(2), Fig 1. It is fully described by specifying the following parameters,
fcu=acf'c, fcy=3/4fcu, Ecu=lc€o, Ecy=5/12€cu, €cm=/3<:8cu
where f’c is the uniaxial strength of concrete and €o is the strain at f'c. €cm is the cr-
itical strain, at which the concrete cover can be observed to spall off, and which can be
correlated to the onset of failure. Factors ac = 1 + 10p" and B8c = 2 + 600p " reflect
the confining effect of transverse steel on concrete strength and critical strain, respec-
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tively; where

w _ 2(b" + d") Av
confired core, Av = cross sectional area of transverse steel, s =spacing of transverse steel,
2.2 Tensile Reinforcing Steel

P = volumetric confinehent steel ratio, b” and d” = width and depth of the

Stress-strain curves of steel bars used in reinforced concrete construction are typically
idealized as bilinear curves, Fig2, characterized by Young's modulus. Es = fuay/ €ay for the
elastic part and by the strain hardening parameter, Ps = (1/Ea)}#(fau - fay)/(€su - E€ay),

for the inelastic part, where fay = yield strength, fsu = ultimate strength, e€ey = yield
strain and e£su = ultimate strain. The unloading branch can be represented by a third linear
branch with the negative slope, -PsEs = 7PaEa, where can be determined from experimental

test data for reinforcing steels. In this analysis, 7= 2.0 is used.

The descending branch of the stress-strain curve has a significance only for the material
point undergoing failure. In order to facilitate our strength deterioration model for indiv-
idual members as well as entire structures, it is important that the strain-softening branch
of the material stress-strain law be included in the model. Thus, it is assumed that failure
is initiated when £+ = €su and is complete when es=a €sulFig2)., The value of @ is here
assumed to be equal to 1.5,

2.3 Compressive Reinforcing Steel

The stress-strain curve for steel in'compression is similar to that in tension, provided
buckling is prevented. In the light of this restriction, it is very rare that steel bars in
compression enter the strain hardening range. In reinforced concrete members, compression ba-
rs are restrained against buckling, as long as the concrete cover has not spalled off. The
accurate determination of the buckling stress is very difficult., Herein, it is assumed that
the bars cannot buckle before they are strained to the point at which the concrete cover spa-
11s off,

3 Primary Moment—Curvature Relationship.

The primary moment-curvature curve relates moments to curvatures for monotonic loading.
It can be idealized by three linear branches, Fig 3, one for the elastic loading part, one
for the inelastic(strain hardening) loading part, and one for the unloading part. Once the
stress-strain laws for stee! and concrete are specified and the cross-sectional dimensions
are known, it is relatively straightforward to compute the moment associated with any
specified curvature, The M - ¢ curve is obtained by repeatedly computing the neutral axis,
y, the curvature, ¢, and the bending moment, M, by increasing the concrete strain € , or
steel strain s, from zero until any one of the possible failure modes is reached(2).

The definition proposed herein attempts to insert some objectivity by identifying limiting
strains for the steel and concrete, after the exceedance of which the wmoment resisting
capacity of a section ls clearly deteriorating rapidly. Depending on the material parameters
and sectional geometry, two important failure modes are considered as : 1) Flexural failure
due to concrete crushing. Concrete crushes in compression when the compression strain reaches
the value ecm. For this to happen in a properly under-reinforced section for a
monotonically increasing load, the tension stee! must first undergo a considerable amount of
yielding. The actual point of failure shall be defined as that curvature, for which the
strength drop reaches 25% of the yield moment(Fig 3). 2) Flexural failure due to fracture of
tensile steel. The compression bars can buckle only after spalling of the concrete cover.
Since it is rare that the concrete spalls off before the bars reach their yield strain, it
is most likely that the buckling will follow immediately the spalling of the cover whereupon
the capacity of the bars to carry compression forces drops rapidly.
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4 Hysteretic Behavior of Reinforced Concrete
4.1 Basic Model Features

There are considerable differences between RC member behavior under monotonic and cyclic
loading. As a result, failure modes that can be specifically excluded under monotonic load
application, by following standard design and detailing procedures, may still prevail under
cyclic loading. For example, bond failures can be avoided for most cases by properly develop-
ing the reinforcing bar forces. However, under repeated load reversals the steel-concrete
interface can deteriorate rapidly and thus become the cause of failure.

A number of models have been proposed in the past to represent the hysteretic behavior
of RC members. The Takeda-type model characterizes the hysteretic behavior more realistically
than a bilinear or degrading bilinear formulation. The model of Roufaiel and Meyer(8) has
been adopted herein, together with certain improvements to better represent stiffness and st-
rength degradation, Fig 4. It is characterized by five different kinds of branches: 1) Elast-
ic loading and unloading: AM = (EI)1A ¢. 2) Inelastic loading : If the moment exceeds the
yvield mement and is still increasing, the moment-curvature relationship is given by AM = (EI
Y2 A . 3) Inelastic unloading: If the moment decreases after the yield moment has been
exceeded, the moment-curvature relationship becomes AM = (EI)3A ¢. 4) Inelastic reloading
during closing of cracks: In a reversed load cycle, previously opened cracks tend to close,
leading to an increase in stiffness and a characteristic "pinched” shape of the moment-cur-
vature curve, AM = (EI)4A ¢. 5) Inelastic reloading after closing of cracks : Once the
absolute value of the moment exceeds the “"crack-closing moment”, Mp* , and is still increasi-
ng, then the moment-curvature relationship is AM = (El)sA ¢.

4.2 Stiffness Degradation

If the tensile reinforcement is strained beyond the yield point, then the bending
stiffness drops from (EI)e to p(El)e, Fig 4, where "p” denotes the strain hardening ratio.
Upon unloading, the bending stiffness is restored to a value somewhat less than the elastic
stiffness, (EI)e. The amount of stiffness degradation is proportional to the maximum
displacement. To predict the bending stiffness associated with unloading from a curvature
level ¢ (branch 3, Fig 4), one method is to employ a function of the form of (EI)3=(El)e(4d,
&y), where B is an empirical constant varying between 0.3 and 0.6, independent of the load
history(5). Atalay and Penzien(l) used the expression (El)3 =aKcr where Ker = (Fmax ~ Fy)/(
dmax / 8y) is the cracking stiffness, and a is a degradation factor and a function of
absolute maximum displacement.

An alternstive method is basically graphic. An auxiliary point(¢o~,Mo™). is constructed
as the point of intersection between a straight line of slope p(EI)e passing through the
origin and a straight line of slope (El)e passing through the point of minimum loading, ¢
¢éx~, Mx~ ), Fig 4. The residual curvature associated with zero bending moment, ¢r-, is
determined by connecting point (¢o~, Mo™) with the point of actual maximum loading in the
opposite direction, (¢x*, Mx'). It is debatable whether the slope of the above auxiliary
line passing through the origin should be equal to p(El)e as proposed by earlier
investigators. According to Fig 4.

p M!')“

— Fixt - =
Mo~ = —": (dx~(EDe - Mx™), dao” = where (EI)* = Mx Mo

1 p(ED. bx* - o
4.3 Shear Effect on Hysteretic Behavior

The effect of shear has been investigated by many researchers. When load reversal occurs
within the inelastic range In the presence of high shear, the open shear cracks will
initially permit the transfer of shear forces mostly through dowel action only, leading to a

rather low stiffness. After the closing of such cracks, aggregate interlock and shear

friction cause a significant increase of the member stiffness. Roufaiel(8) has modeled this

effect by intoducing the”crack-closing” moment Mp*, associated with curvature ¢p*, Fig 4.
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The point (Mp*, ¢p*), can be determined as follows. The point (Mp*, ¢p*) is determined with
the following coordinates (Fig 4):
(EI)*

S T ST Ma* = (EDedn?
The coordinates of the crack-closing point can then be expressed as ! Mp= @ pMa* and ¢p* =
apPnt where gp = 0.4 a/d - 0.6, ap =0 for a/d < 1,5 and ap =1 for a/d 4.0,
4.4 Strength Deterioration

In addition to stiffness degradation, RC members experience strength deterioration under
cyclic loading beyond the yield level. The rate of strength deterioration and the fallure
curvature depend on many factors, such as the confinement ratio, axial force, concrete
strength, etc. If the failure curvature for monotonic loading ¢ ¢, Is known, it is possible
to derive a strength deterioration curve.

Atalay and Penzien(l) had noticed some correlation between commencement of strength
deterioration and the spalling of the concrete cover. But Hwang's experiments showed that
strength deterioration can start at considerably lower load levels. Even for loads slightly
above the vyield level, damage and strength deterioration c¢an be observed, provided a
sufficiently large number of load cycles is applied. Roufaiel(8) found a strong correlation
between the onset of strength deterioration and a "critical” displacement level, at which
the concrete in the extreme compression fibre is strained to some limit value. But his
investigation relied on test data with relatively small numbers of cycles for each load
level, such as the test series by Ma et al(7). More significantly, it is unreasonable to
stipulate such a precisely defined point of failure initiation, i.e. to say if this point
is exceeded by a small amount, strength deterioration is initiated, but if it is missed by a
small amount, no such strength deterioration takes place., Thus, Chung{3) suggested that
strength deterioration is initiated as soon as the yield load level is exceeded, and the
strength deterioration accelerates as the critical load level is reached. For this purpose,
a strength drop index, Sa , is proposed which defines the strength drop to be expected for a
given curvature, ¢, in a single load cycle (Fig5). AM = SqaiMr, Sa = [(¢ -py)/ (s - ¢y)]v
where Sa = strength drop index for curvature in a single load cycle, AM = moment capacity
reduction in & single load cycle up to curvature ¢, AMr « moment capacity reduction in a
single load cycle up to failure curvature ¢, ¢t =failure curvature corresponding to
failure moment capacity Me¢, w = free constants, With AM denoting the strength drop in the
ith subsequent load cycle for some curvature ¢, the residual strength after this load
cycle is given by mi(¢) = M(¢p) - i%AM. Where

AM =1 (bt - ¢y)p (EDe + My =~ Mg ][u ]w
bt - Py
On the basis of selected experimental data, a value for w of 1.5 appears to give good
results,

5 Implementation and Numerical Examples

This hysteretic model has been also incorporated into the computer program, SARCF(Seismic
Analysis of Reinforced Concrete Frames), which has been coded by chung(4). To illustrate the
accuracy, with which the model can simulate hysteretic response of RC members, some numerical
examples will be presented below., These cases were seletced from a number of simulation

studies because they exhibited pronounced strength drops under constantamplitude loading, in
which case the model’s capacity to simulate strength deterioration is challenged most. For

this purpose, Hwang’s experiments(6) and some of the Berkeley tests(7) appeared to be most
appropriate. To realistically simulate cyclic behavior of RC members, mathematical hysteretic
models must consider the effect of strength deterioration, which can be clearly noticed in
low cycle fatigue tests. Because of the phenomenon, eight experiments performed by Hwang and
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Scribner(6) and two tests at the University at Berkeley(7) were selected for numerical
simulation with the load histories shown in Table 1.,

Hwang's experiments explored the relationship between load history and total energy
dissipation capacity of RC flexural members. He tested a total of eleven cantilever
specimens under displacement control and various load histories. All of these were analyzed,
and agreement between experimental and analytical load deformation curves was excellent.
Some of these numerical simulations are reproduced in Figé. It is, in particular, noted how
closely the experimentally observed strength deterioration is reproduced numerically. This
is an indication that this hysteretic model promises to be reliable.

6. Conclusions

An analytic hysteretic model has been proposed with various enhancements that is
believed to be more rational. It is based on a thorough investigation of the many factors
that can contribute to the hysteresis of reinfored concrete member subjected to cyclic
loadings. Some model parameters were calibrated against the few available experimental
results. For example, the rate of strength deterioration and stiffness degradation were thus
determined. An accurate reproduction of the experimental load-deformation curve is essential
for meaningful nonlinear dynamic analysis of reinforced concrete structure. The principal
shortcoming of the model is the small number of the test data which is based on the
quasi-static experiment performed under the constant load amplitude. Thus, available
experimental investigations be undertaken, especially to determine the relationship between
load and deformation level and to study the influence of important parameters, such as
confinement ratio, longitudinal steel reinforcement ratio, and shear reinforcement.
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