A SYUDY ON THE OPTIMAL REDUNDANCY RESOLUTION OF A KINEMATICALLY REDUNDANT MANIPULATOR

  • Published : 1990.10.01

Abstract

This paper proposes an optimal redundancy resolution of a kinematically redundant manipulator while considering homotopy classes. The necessary condition derived by minimizing an integral cost criterion results in a second-order differential equation. Also boundary conditions as well as the necessary condition are required to uniquely specify the solution. In the case of a cyclic task, we reformulate the periodic boundary value problem as a two point boundary value problem to find an initial joint velocity as many dimensions as the degrees of redundancy for given initial configuration. Initial conditions which provide desirable solutions are obtained by using the basis of the null projection operator. Finally, we show that the method can be used as a topological lifting method of nonhomotopic extremal solutions and also show the optimal solution with considering the manipulator dynamics.

Keywords