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ABSTRACT

A method to determine nonlinear system observability
will be introduced here.

For the determination of the dererministic nonlinear
system observability two conditions connectedness and
univalence, are developed and used. Depending on how
the conditions are satisfied, observability is classified in
three categories : observability in the strict sense, wide
sense, and the unobservable case. Including simple linear
and nonlinear system example an underwater acoustical
locaization tracking nonlinear system, the bearing - only

tracking example is analyzed.

1. INTRODUCTION

Deterministic observability problem is a determination
of whether every state of the system is connected to the
if

connected. So if any system is observable, then one can

observability mechanisn and how it is connected,
reconstruct a process state x(t) from measured information
{y(1}, where te[tg, l.

The observation or measurement equation of any

dynamic system is modeled by

y{t) = h(x ¢}

where x(t), an unknown process state (such as acoustic
source location and motion etc.), is given by

d=

dt £x)

@

x(t) eR", y()eR™ and f(.), h(.) are appropriatt n and
03]

assumes at least a certain intelligent quess as to the

m nonlinerar functionals, respectively. Equation
structure of the data source such as a submerged moving
body.

For (1) and (2) linear in x(t), well - developed test
criteria can be used to determine observabilty [1,2]. But
for the general nonlinear process state observability is, in
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general, much more complicated. In a geometric sense, a
functional relationship between measurement space and
state space is not generally one - to - one such that an
inverse function bettween these two spaces is unique.

A method to determine nonlinear system observability
will be introdured here.

For the determination of the deterministic nonlinear
system observability two conditions, connectedness and
univalence, are developed and used. Depending on how
the conditions are satisfied, observability is classified in
three categories : observability in the strict sense, wide
sense, and the unobservable linear

case. Including

system example an underwater acoustical localization
trackine nonlinear example, the bearing - only tracking

example is analyzed.

2. OBSERVABILITY

In general, nonlinear observability is a very difficult
property to ascertain. Sufficient data may be obseved to
reconstruct the state of interest over one domain but
not over another. In a geometric sense, the mapping
from the measurement to the state space may not be in
one - to - one correspondence globally.
studied

observability in different ways.

Various  authors  have nonlinear  state
Extension of linear
observability criteria to the nonlinear case can be found
in {3] [4].

observability matrix rank condition [5, 6, 7] or Taylor

for control processes and Here, an

series expansion [8] is used. Since observability really
inverse
In this

involves an inverse function, a well - known
function theorem from analysis is used here.

approach, the Jacobian matix of the observation related
From this view [9, 10, 11,

Despite

function plays a central role.
12] may be considered in the same category.
the many results, some are insufficient, too complicated to
apply in practice, applicable only to special classes, or
valid for only small variations (linearized models).

2.1 Modified Inverse Function Theorem



In analysis, an inverse tunction theorem is widely
used to get the local inverse of the function by providing
a nonzero determinant of the Jacobian matrix J.

Consider an n real - valued continuous function, F : x
—~>Y, xeRn Ye R? such that

Fx)=Y €)]

where F(x) is a Cl-map of RN onto itself. The global

inverse function theorem says that the necessary and
sufficient conditions for F(x) to be a cl- diffeomorphism
(i. e, an inverse F-1 exists and is also differentiable) are

given as follows [13]:

1) det J F(x) = 0, and 4
2) 1im |F(0] =, for all %, (5)
fixdl — o

where ||x(.)|| is an Euclidean norm.

But the above conditions only guarantee the existence
of an inverse function of (3). To be unique for all x
and have flexibility in the application, the theorem can be

modified further. First, consider the following :

Definition
Any individual function of (3), Fi(x), i =1,2, ..., n
is called an absolutely independent function if it consists

of only one component of xe Rn.

Definitions

A cover for a ser A is collection v of sets such that
AVE, v. Let X and Y each be connected spaces. If f
maps X onto Y with the property that for each ye Y
has an open neighborhood V such that each component
of ue U, U=£1(V) is mapped homeomorphically onto V
by f, then f is called a covering map. In this case if
the cardinal number is n, then f is an n - covering map.
If n is finite, then it is a ﬁ_ni}cr-_c;g\ieAri_nglqug, and if n
=1, then it is a one - covering map.

Remarks
i) For special cases with F including one absolutelv
independent function, then

det J F-(x) # O for all x,

where F- consists of n-1 function found by
deleting any absolutely independent function from
F.  And the result can be further generalized for
more absolutely independent functions.  Since the
n - deimensional det JF(.) = 0 always includes n
- 1 dimensional case, the weakened condition will
be used only for the special case whenever it
applies.
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i) Further restriction of the so calied fimte -
covering condition " of Palais theorem [13] to a
one - covering condition of the current theorem is
necessary for F globally one - to - one.

ili) Neither of the conditions nonzero Jacobian and
one - covering conditions alone is enough since the
nonzero Jacobian condition alone lacks globality of
the inverse of F, and the one - covering condition
alone lacks independence of F.

iv) Since the nonzero Jacobian guarantees the
existence of only a local inverse, i. e, provides
"connectedness condition” in observability analysis.
The one - covering condition, on the other hand,
provides the uniqueness of this connection.  So,
this is termed a "univalence condition" for the
observability problem.

Example 2-1

Consider the two - dimensional function f which is
given by

X+ X
w0 2><2 + 4x2
1 2
Then
2 2
limnf(x) H =1lim {(xi-#— x22) +(2x2l + 4xi) } =oo.
fld) > o= . 5
bd 1 +x 2 —oo

Clearly the finite - covering condition is satisfied, but

actual solution of the two equations yields

2 2
£ = + =
=R T, =Yy

’

2 2
£ = +4x =
2(x) 2x1 4\(2 y2

with non - unique solution

=+ —_ )
Xl Y/ 4y1 y2

-2
x == Y 2 il
2 2

Thus f is only locally homeomorphic, i.¢., f is not one -
to - one globally. Both x; and x; are covered by the two
"sheets" of cover. However, the existence of the two
independent solutions is guaranteed by a nonzero
determinant of the Jacobian,

det Jf(x) = xlx #* 0,

2
i.e, with xlatO and x2¢ 0,



2.2 Nonlinear Observability

For nonlinear deterministic system (1) and (2), it is
assumed that f(.) satisfies the required conditions to
quarantee the existence and uniqueness of the solution
x(1), and y(t) is assumed differentiable up to (n-1)th

order in t. Define, then, system observability as follows:

Definition

The process (1), (2) is orbsﬂeryablie‘ a g if knowledge
of the output measurement y(t), te[tg, t1] is sufficient to
determine x(tg) uniquely for finite 1. If every state x(t)e
RD is observable on the time interval considered, then the

state is co»rgngletglqugsggib}g.

of (2)
substitution of (1) and with appropriate replacement of

By differentiation with respect to t and
lower order derivatives to the higher order successively
(with suppression of t in variables for convenience)

vy =hixt,
Y': hl(YIXIt) ’

Y“:hz(y,y',x), 6)

n—1) .

=h Y yleay

(1—2)
1 )

Denote the teanspose of the vector Ye R™ by
T (n —-1)
Y =[y, vy ] %)
and the set Y-, if needed, by

YA:{YIY’l“Ary(n—Z)}' ®)

Then the vector notation of (6) becomes

y = 1y, x) )

By the successive replacement of lower - order derivatives
to the higher oeders, the functional dependency between
the individual functional elements h, hy hy ..., vanishes
since this procedure is exactly the same as the successive
elimination of unknown variables in solving (6) for x.
So, after this procedures the maximum independency
between functional elements is obtained.

Now the main observability result may be derived by
showing that the unique determination of every state x(to)
from (9) is determined uniquely from the measurement

y(1), te[w, u] and that (9) has a unique inverse for x(t).

The first point is seen by the unique sufficiently smooth
Taylor - series of y(t) at t=1, so that y(t) yields Y® (),
i=1, 2, ...
the above modification of the inverse function theorem.

, n--1. Then, the second point depends on

Comsequently, observability is determined by the

following test.

Observability Result
System (1), (2) is observable (in the strict sense) if
(9) satisfies the following conditions for all t, te [y, y}:

1) Connectedness condition

det JH _()#0, 10)

n

dH
0= Tom H_€) of H(.)

consisting arbitrarily of n of its total mn functions.

where JH is a subset
2) Univalence condition
For Ha(.), every %3 i=1, 2, ..., n, can be
uniquely expressed in terms of only Y in (9).

Depending on the satisfaction of the conditions, define
and categorize system observability as follows :

1. Observable in the strict sense.
Both connectedness and univalence conditions are
satisfied for any one or more combinations Hp(.)
out of mn function which comprise elements of
H(.).

2. Observable in the wide sense.
Only the connectedness condition is satisfied, i. e.,
multiple covering apperas in some element of x
for some time t

3. Unobservable.

One or more states of x cannot be expressed in
of Y. In this
unconnected t0 measurement space Y.

terms case, those states are

This method is readily applicable to any linear or
nonlinear time - varying as well as time invariant system.

Following examples demonstrate the application of the
above results.

Example 2 -2
A falling body in the constant gravity g with position
variable x) and velocity x; can be expressed as



If one measures position xi, then

v =xl, and

X =
1

= X

Y 2

So, both states are uniquely determined from Y = (y, y)T,
and hence the system is observable. On the other hand
if velocity x2 is measured, then
y=x 2
y'=x =-g
Only x; is connected uniquely to Y.
the
Classic rank test can be used to verify this.

xy is disconnected

and unobservable ; hence system is unoservable.

Example 2 - 3 [9], [13]

T E,X g
X =K X,

x_ =0,

3

Yy =X, then

1

Y =X, X,
y"=-X X, =-yx

So, det J=2xle3 #0 implies that the initial state of

the form {x*,, #0 x_ # 0l garisfies the connectedness
10 30

conditions. But from the above last three equations, one

obtains
X 1 =Yy
e
=+ '
x, =%y / _\/j v
7
% 5 =% -7
and have multiple expressions or two covers for x; and
x3.  So, the univalence condition is not satisfied. The
system is only observable in the wide sense if
{x

10$0'x30¢0)'

3. Bearing - Only - Target (BOT) tracking example

An
example

important  system  observability determination

in underwater tracking is demonstrated here.
The example is a bearing - only - target tracking problem

where only bearing information of the target is extracted
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from the measurement device and used to determine the

other state variables as well as whole system
observability.
Consider an acoustical source or target (T) and

receiver or observer (0) with velocity components Vo,
V1, Vox, Voy, the relative coordinate x(t) and y(t) can
be generated as (refer to figure 1)

¥

Figure 1, BOT configuration

X(t) = XT(t) - Xo(t) ’

y(t) = y’l‘(t) - yo(t) .

Define state variables in mixed coordinates (i. a

€.,

combination of polar and rectangular) as

x (€)= By, x,(8) = (v,
XM=V ) -V (0= Voo
x, (1) = va(u - voy(t) =V, @,

where g(t) is bearing from north of T from O and r is
range. Then, the state equation in this specific coordinate
system becomes

X_cosx_-x sinx
3 1 4 1

X

2
: x_sinx_+x cosx
x(t)=("3 17 7y

1 (11)

a
x

a
Y

where ax(t), ay(t) are acceleration in each direction.



Measurement of g(t) leads to

y© =[1000] x(. (12)

Observability is checked next for the two cases where
maneuvering exists, 1. e., ax(t) # 0 and/or ay() # 0,
From (11) and
(12) with ax(t) = 0 and ay(h = a(® # 0, (. e,

and nonmaneuvering, i. e., both are zero.

maneuvering exists only in y direction), and by
successive replacment
=x (13)
Y 1!
x3 cos y—x4 sin y
yr= - , (14)
2
- (a sin y+2y'x4cos y+2y'X35in y)
yr= — , (15)
2
2
Jay'cosy+x_(3y"siny+2(y') cosy) +x
ym = 3 4
p:4
2
(Gy"cosy-2(y) siny+alsiny (16)
Then, from (13) - (16)
X = (17)
N Y s
- 2y'x4v acosy-siny
x,= 5 , (18)
y'cosy+ 2{y") siny
(y"siny-2(y") cosy) x -y'asiny
4
x,= P (19)
y"cosy+2(y") siny
3 . o 2 PR
al4 (y') cos y sin y+ 6y y* cos” y-3y'y" -y
};4: 2 4
2y'y't- 3y + 4 (YN

cos y sin yl+ a'sin y[y" cosy'+ 2 (y") 53iny)

From (20) it is clear that if a(t) and/or a'() # 0, (. e.,
maneuvering exists), x4 is connected to the measurement
vector Y, it is unique, and thus it is observable. This
imples from (18) and (19) that x2 and x3 are also
So, the system satisfies the
connected condition in this case. But when a(t) = 0 and
a () = 0, i e. nonmaneuvering, (20) suggests that x4 is
This causes,

uniquely  connected.

not connected to Y and is unoservable.
again from (18) and (19), that xz and x3 are disconnected
Only x; is observale
After lengthy

from Y and thus unoservable also.
which is itself a measurement variable.
computation, the determinat of the Jacobian becomes

, (20)
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2
~2y'a'sin y+3a{2 (y"

4
X
~
2

det J = cos y+ y"sin vy}

3
~ [12y'y"sin y (1 + cos2 y)+ Bcosay(y') Jx3+

2
4y'cosy sin y[2(y') cosy+ 3y"sin ylx

4 21)

From (21), this system is unoservable with det J =0 for

the following cases

1) Infinite range, X =co;
2) Zero heading rate and acceleration, 8’ = 7= 0,
3) x3 :x4 =0, i.e, x2= 0, with a(t)=a'(t) =0

(parallel stationary movement, including tail chase);
4) Constant range with special heading such that

2
_ 6a(f"

tan B T2 a B" 3aB" : (22)

As well as certain others, the system is unoservable due
to the lack of rank and thus, lack of
some  states Consequently, the known

information of
in those cases.
result, i. e, bearing - only target tracking system, is
observable when relative maneuvering exists with several
exceptional conditions such as described in 1) through 4)

above.

4. CONCLUSION

Observabiltly problem for the deterministic nonlinear

system is studied here. Since nonlinear  system
observability is a geometric nonlinear functional structure
property, modified version of the inverse function theorem
is useful. Two conditions, nonzero Jacobian and one
covering condition must be satisfied for the existance and
the uniquness of the inverse between the system state
space and it's measurement space.

Nonzero Jacobian condition provides the
connectedness condition which says that every state must
be connected somehow to the measurement space for the
system obserbable. On the other hand, one covering
condition guarantees the univalence of this connection.

Depending on the satisfaction of these two conditions,
Observale
the

measurement space and it's connection is unique (nonzero

observability is classified in three categories.

in strict sense means every state is connected to

Jacibian and one - covering), observable in wide sense

means every state is connected but it's connection is not
and

unique (nonzero Jacobian and muli - covering),



unoservable case means some states are not  connected
to the measurement space.

Application of this method is demonstrated by some
linear and nonlinear examples. Bear - omly - target tracking
problem is analyzed- for the another practical system
example. A well known fact that the BOT system is
observable when relative maneuvering exists and
unoservable when non - maneuvering is proven, again.
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