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Abstract

There have been many approachos to soive the
disturbance rejection problem in the control of
LTI systems with state independent disturbances or
possibly noniinear state dependent disturbances.
From the view point of each actuator, robot
manipulators can be modeled as the second class of
svstoems. with this model, M. Nakao ot al.{l]
introduced a decentralized control scheme based on
interference estimation which is simple in its
implementation and robust to the coupled dynamics
and paramelor variat lons, This papee
systematically generalizes the control scheme to
arbitrary finite dimensional LT1 systems with
disturbances, Tn doing so, we develope a
disturbance observer  theory for solving  the
disturbance rejection problem, We also present a
discrete version of the theory with discussion of
sanpling and lime-delay effects.

{, Introduction

The dynamic model of manipulators is
non-linear and strongly  coupled  between  each
Joint, The inertia matrix and the vector
representing the  Coriolis,  centrifugal, and
gravitational furces are varying as the position
and the velocity of each Jjoint vary. This makes
the dynamic model  even  tiwe-varying, vhich
obviously  brings  aboul  the  ifficulfie. ih
control, In the vase of controlling direct drive
manipulators, thece difficultics even get worse

becagse the nonlincarity and time-varying natnre
of the dynamic model directly affect the behavior
of  the actuators, There  have  been  wany
approaches  to  handle  these Jdiffloultio 3
manipulator contro! such as the computod torgue
methods{2], adaptive computed torque methods[3],
and linearizing methods by nonlirear [eedbackl4].
Even though the methods are working well in some
circumstances, the first methods may be sensitive
to payload variation, and the second methads may
require exciting signals to ensurc robustness, and
the third ones may also be vulnerable to parametoer
variation, In terms of implementation, the above

methods  require  much  centralized  compulation
effort and correspondingly expensive underlying
hardware.

In these aspects,
M,Nakao =t al.{1]

the scheme praposed  hy
seems to denerve much attent ion

due: to its decentralized and robust nature.
Following the idea of [1§, 1t1his paper

systematically deverlopes 1 robug! and

decentralized control scheme baced G Y

disturbance observer. In developing the theory,
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we consider general LTI
model rather than a first
in [1]. For the first
systems with disturbances can be represented by a
reference model  with  fictitious disturbances.
The sufficient conditions for the fictitious
disturbances to inherit the properties of the
original disturbances are also derived. Based on
this representation, we present a scheme for
observing the fictitious disturbances which turns
out to be uncausal (improper). Then, we design an
approximated scheme to have a  causal(proper)
disturbance observer, We provide this -stimaled
disturbance to  the system input in order to
neutralize the fictiticus disturbance, We claim
that the closed~loop system hebave just like the
reference model, which enables us to design outer
Toop contrul system based on the reference aodel.
Finally, we apply the disturbance observer to the
control of the GSIS direct drive arm. Ve present
the simulation results,

systems as a reference
order servo motor model
step, we show that LTI

2, Continuous Time Disturbance Observer

In this section we are dealing with a ¢lass of

LTl systems described by the following block
diagranm.
do
N E NN U
d(s)

Figure 2.1 System Block Diagram

Here u, do, and v denate
disturbance Lo the stem,
respeclively, Moreover,
numerator and denominator
function H(s), and K is
system,

For the first step, we show tha!
described by the Figure 2.1 can be
into the following nominal systems
nominal forward gain Kn and nominal
function

the system input, the
and the system output,
nie¢) and dtg) are the
of the system transfer
the forward gain of the

the syvstems
transformed
with the

transfer

nm(s)

Hml(s) = ==
dm( )



nm(s) y

" du(9) | 5

Figure 2.2 Nominal System Block Diagram

Lemma 2.1 The systems represented by the
Figure 2.1 can be transformed into the nominal
svstem given by the Figure Z.2.

proof Frow the Figure
following :

d(s)y = n(s) Ku - n(s)do
Then, the following can be derived :

du(s)y + (d(s) - du(s))y =

nu(s)kn + (n{s)X - nw(s)Kn)u - nis)de
Hence, it is clear that

2.1, we have the

a(5)K-nm{s)Ka n(s) q
e d() J
nm{s)

nais)
Py letting
nis) dm(g)~d(3)
dn = do - y
nm{s) nm(s)

nis)K-nm(s)Kn

nm(s)
we have

A (5) . d
y i nu n }
which completes the proof.
It is desirable that the fictitious disturbance
dn inherit the properties of the original
disturbance d.. For this it is sufficient that

($1) the original disturbance do is a smooth
function,
(S2) the npominal transfer function Hals) is
minimum phase,
(S3) the system {ransfer function H(s) is
stable,

Now, we introduce a disturbance observer which

iz perfect but uncausal.
Lemma 2.2 : (Uncausal Disturbance Observer)
Consider the following disturbance obgerver

Figure 2.3 Uncasual Disturbance Observer

Then the closed-loop system becomes
Nm (%)

L
dm(s)

y:Kn
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which is the perfect nominal
no disturbance,
proof From the Lenma
represented by
v = Hut(s) [ Knu — dnl
Then it can be derived that

system model with

the plant can be

2.1,

e = Ym — ¥
= Hu(s)dn
and
- 1
d = —- da

. Kn
It follows that
y = Ha(s) [ Knluc + d) = dn !

Hm(s) l Knlue + “'}E’ dn) - da

Hm{s)Knuc

which completes the proof.

Note that if the conditions (S1) ™~ (83) are
satisfied, the closed-loop system is internally
stable. The stability follows from the observation
that the bounded input u gives the bounded y and
ym, and the minimum phase Hw(s) results in the
stable Hm(s)-1, i.e.,the bounded estimated

disturbanc d.Since the nominal transfer function
Hw(s) is causal(proper), its inverse Hm(s)™! |is
clearly uncausal(improper}, which impiies that the
above disturbance observer is unimplementable,

For these reasons, we attempt to devise
alternatives for uncausal disturbance observers
which compensate the fictitious disturbarce ds
asymptotically with Zero erros or with
sufficiently small erraos,

Theorew 2.3 t (Causal Disturbance Observer) We
construct a causal disturbance observer with the
following structure,

u u y
Plant__J—
nm(s) p
dm(s)
¥
~ R dm(s)
l d dr_ [bG)4_(BeG)

L
Kn

a(s)

Figure 2.4 Casual Disturbance Observer

the inserted filter is chosen  such that

da(s)h(s)

Here,

(1, coemese- iy causal,
nmi{s)a(si
b(s)
(T2), lim —-—= =1
s 20 a(sg)
(T3). zeros of a(s) ¢ 0.
Under these conditions and (S1) ~ (S3), we have

the following results

(1} the closed- loop system
sense of BIBS,

(2) thn behavior of the cloged-loop system becomes
asymptotically

becomes stable in the



Nm(s)

dwis)
where | Ad | < ¢
small € - O,

proof Since the only difference between the
uncausal and causal disturbance observer is the
strongly stable filter bi(s)/a(s),we can conclude
the stability of the closed-loop system by using
the same heuristics applied to the stability of
the system with the uncausal disturbance observer.

With the same reasons in the proof of the Lemma
2.2, the fictitious signal d equals to dn, Fros
(T2) and (T3), it is clear that there exists a
sufficiently small & I+ O such that

ldf"'dnll\;i’

y = Kn

[+ 5]

for some sufficiently

is satisfied asymptotically. 1t can be observed
that
nm(s) l Kt 1 d ) 4 J
= —— ue + -~ df) -
Y s ; Ka !
N (s) - E
= o= | Knue + (df - da)
dals) | ke J

Taking Ad = d¢ ~ da
If the characteristics of
disturbance do is known a priori,

completes the proof.
the original
the condition

(S1) ~(S3) ensures that dn has the same
characteristics,

In this case, we can apply the internal wodel
principle to achieve asviptotic perfect
disturbance compensation, i.e., # = 0 in the above
theorem. In doing so, we take the following steps
to design the filter b(s)/ats) giving perfect
compensation, Here, we agsume that Aais) denotes
the characteristic equation for the original
disturbance do,

i -t 1
(1), Take ~-- - suclh that Ha {(z)

ols) Nols) Auals)
is causal(proper,

1
Auls)Adal(y)
design a pole-placement feedback

be(s)

(2). Regarding as a plant,

solpensator ge(s) = such that

acls)
desired i

the c«losed-loop system has  a

constant.

(3). Take the filter

8e(3) Aols) Aals)+he(s)

is chosen for giving

where Ks

Then, from the internal wodel principle,
we have

lim de = d = du

e
which, in turn, guarantees the asymptotic perfect
disturbance compensation, However, it may be
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impractical to assume that the characteristics of
d(s) be available.
Exampie 2.4 In this exanple, we consider a 2nd

order plant with a asinusoidal disturbance and
design the corresponding disturban o observer. The

problem is given by
(1) system transfer function @

n(s) s + &

d(s) 52 + Ry + 2
(2} forward gain :

k=04

(3) disturbance :

do = 0.3 sin(10x t)
The designed disturbance observer is reprented by
(13 nominal system

nu(s)
KnHm(s) = Ko ~———+- = 10 ~~———m
dm(s) s + 10
(2) filter :
1000

a(s)

bis) 5+ 1000
The simulation is performed by the following block
diagram :

Figure 2.5 Simulation Block for Example 2.4

The stmulation results are in the plot  named

Results of Frample 2.4

3, Discrete Tise Disturbance Observer

In the previous section we developed the
disturbance observer theory in the continuous time
domain  and  assumed that its implementation be
based on  an analog circuit, fast
inexpensive microprocessors becoms available, the
controllers  for  industrial robots tend to he
digitalized, Considering a wmicrorovessor based
implementation, a discrete version of the:
disturbance observer theory is developed in thisg
sect ion,

There

Since andd

are two ways for designing a digital
controller, First, we design a controller in the
continuous time domain and then discretize it by
using a transform method. Secondly, we discretize
the plant and then use the discrete plant to
design a digital controller in the discrete time

domain, In this section, we take the second
approach. In designing a digital disturbance
ohserver, we take the same steps as the steps

taken in the previous section.
We deal with a class of discrete
represented by

LTT systems



yx = H(z) - {uk = di)

- (uk = dw)

Here uy and yf éenote the system input and output,
and dr denotes the system disturbance. The nominal
system model is given by

Yk = Kn * Ha(Z) - uk

nm{z)

i - -ul(ks
da{2z)

n "

We choose a filter F(Z) such that
(D1) F(z2) - Hu(2)~' is causal,
(h2) lim F(z2) =1,

(D3) | poles of Flz) | « 1.

As before, F(z) is used to construct a causal
dicturbance observer and may be chosen by applying
the discrete internal model principle. With the
nominal system model and the filter, we construct
a causal disturbance observer as follows,

Figure 3.1 Digital Disturbance Observer

By applying this digital disturbance observer,
wee have the following results.
Theorem 3.1 (Digital Disturbance Observer)
We assume the following :

(C1) the system transfer function H(Z) is stable,
(C2) the nominal transfer function Hw(Z) is
minimum phase,

(C3) the plant disturbance is a smooth
function

Under these conditions, we have the following
results ¢

(1) the closed-loop system is BIBS stable,
(2) the behavior of the closed-loop
asymptotically converges to the
of the system represented by

{27}

system
behavior

y = Kn - = Uc + ed j
dw(z)
where | ed | L& for some sufficiently small
£ > 0,
proof ¢ Since the structure of the closed-loop

system is same as in the continuous time case, we
can uge the same heuristics to prove BIBS
stability of the colsed~loop system.

Using the Lemma 2.1, we have the Ffollowing
equivalent transform for the discrete plant @

ye = ~3£§§§~ -[ Koux - dic ]

dik inherits
disfurbance

From (C3), the fictitious disturbance
the characteristics of the original
dr.  Then, the output error becomes
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"
Ch = ¥k T Yk

Ho(z)  dy

it follows that

From this,
Huiz) ™! - en = du

From (D13 ~«(D3), there exisls a sufficiently small
& = 0 such that

. p o N
lim | de = de | < &
[,
Meanwhile, the response of the closed-loop sycten
becomes
yi = Hm(z) - [ Kn - ek +  di — di ) 1
Hence, taking ed =

the

d ~ dm completes the proof.

In fact, estimation dp of the Fictitious

n
disturbance dk can be applied to the system input
at the time instant k+!, Thereby, there always
exists contribution of this time-delay effect to
the steady state error eq. However, we claim that

if the sawpling time of the digilal disturbance
observer is  sufficiently small, then the
compensation error due to the tiwe-delay be also

sufficiently small,

Example 3.2 In this example, we conzider the
same plant as in Example 2.4 and design a digita!
disturbance observer. The digital disturbance
obhserver is characterized by
(1) . nominal system model

1 - a
kn - Hu(z) = ~——- -
. z~-a
(2). filter :
1 -b
Flz) = e
z-b
We take the sampling time as T = 1.6ms. The
simulation is performed by the following block
diagram :

Figure 3.2 Simulation Block for Example 3.2

The simulation results are given in the plot pamed
Results of Example 3.2

4. Application to the GSIS direct drive ara

The dynamic model of the GSIS direct drive arm
can be derived as follows. Since the first two
Juints awong the four joints are directly driven
by the motors, we consider the dynamic model for
those two Jjoints,

T=H(O)6 +V(E,E) + GO)



where T, & & RZ»1 denote the input torque and

Joint angle vector. The inertia matrix H(&)&
R2x2 js given by
Py - Pacos(@1 + A2)
H(B):[ ]
- Ps cos( @y + H2) P2

and the vector V(O, #) & R2xt representing the
Coriolis and centrifugal forces is given by

( Pr@3% sin( @1 + H2) + Peby ]
£ = . .
veeH Pe &% sin( @y + €2) + Psdlz
and the vector G(&#) € R representing the

gravitational force is given by
G(HY =0

From this model, the first joint ~an be described

by the following first order system with the state

dependent. noise :

- 1
Gy = s Ty~ do)
Pys
K do
el T B
Py
where do = ~ P362 cos( @1 + Gg)
C P A sin(By + Ay 16,
With this model, we dezign  the  disturbance
observer as follows ¢
1
Kn - Hm(s) = Ki o+ —ommm e e
Ju s + Pn
g
sy = 7 =
s+ g

we apply this choice to the Figure 2.4. We also
contruct a discrete disturbance observer for the
first two joints and observe the specd response of
the D) arm comparing with the response of the
response of the reference model.  The cimulation
results are given in the plot named Results for DD
Arm Simulation. From the plot of the steady state
error, it can bhe observed that there exists an
osillation of 1.0x10"%[rad/sec} order in the
steady state, This may result in a few decades
micron error of the end dffector, which is not
good enough for the direct drive arm. In order ta
reduce the steady state error, we design a 1Q
speed controller regarding the reference model ag
the plant. Then, the simulation results of plot 5
and plot 6 show that the steady state error is
reduced to the order of 1.0x10-5{rad/sec]  that
corresponds to a few micron order error of the end
effector,

5. Conclusion

In this paper, the idea of the interference
estimation{l] is systematically generalized to set
up a disturbance observer theory. It is shown

that the disturbance observer results in the
closed-loop  system  that hehaves following a
reference model with small errors. We then
present a scheme for an asymptotic perfect
disturbance observer. A discrete disturbance
observer theory is  also developed with  the
discussion of the time-delay eaffect, The
disturbance observer is applied to the gerve
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driver of the GSIS direct drive arm with the

simulation results presented.
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