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ABSTRACT

In this study, a design method to obtain a robust subop-
timal regulator for linear multivariable system is presented.
This new design method is based on the optimal regulator
design method using eigen-structure assignment and if uses
additional cost function which represent robustness of the
closed loop system. When we design the regulator using pole
assignment method for linear multivariable system we have
cxtra degree-of-freedom after assigning desired eigenvalues of
the closed loop system in determining the fecdback gain. So
we assign additional robust suboptimal eigenvectors so that
we can obtain robust suboptimal regulator. In this study we
also feedback the system output for more practical applica-

tions.

1. INTRODUCTION

It is well know that the LOR(Linear Quadratic Regula-
tor) has a good robustness[1-3]. But not all LQR has a

good robustness and some example give poor robustness{4].
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So we must include some robustness factor in designing
a LQR especially optimal LQR.
There are some method that try to include the robust-

ness in designing optimal regulator [5-8]. But these methods

use the assumption that the parameters of system are
described by another variables and they differentiate the new
variables. Or they assume that the sensitivity of the parame-
ter can be described by some variables and then minimize

this sensitivity function.

These methods have some weak points, first it is very
strong assumption that we can describe the system parameter
with some variables, for example, like aging effect of the
components some variations can not be described by vari-
ables. Second, for the sensitivity function, it is also very dif-
ficult to formulate the sensitivity by known parameters.
Third, though we assume that we made some formulation of
sensitivity we must linearize the function at the operating
point, so there will be linearization errors. Finally we intro-
duce new variables, so the system order increase 2 times and
there are computational difficulties.

In this study, we represent new design method of robust

optimal regulator using eigen-structure assignment.  This

method use the desired system eigenvalues and eigenvectors



which have robust and optimal property. This method does
not require the formulation of sensitivity function or system
parameter and is a more systematic and easy way to achieve
desired regulator than the design method using {Q, R} by

try-and-error.

2. OPTIMAL REGULATOR DESIGN

In this section, we briefly describe the optimal regulator
design method using eigen-structure. Regulator design by
eigen-structure means we assign eigenvalues and eigenvectors
to get the feedback gains.

Hence if we assign optimal eigenvector it becomes

optimal regulator and if robust one then robust regulator.

The step of feedback gain determination by eigen-
structure assignment for linear multivariable system is as fol-

lows[9].

i)  determine the maximal rank matrix

Nll
@.1

Ny
each N;must satisfy eq(2.2)
MNI-A, BN, =0, (i=1,..n) 2.2)
here
N, e C(n +m)*m
n, m : number of state, input
A, B : system matrix, input matrix

N; : desired eigenvalue (i=1,..11)

ii) determine parameter vector P,
Pi = (PipyPim )" (2.3)
here
Vo= Ny - - WNy,)
Wo = Ny - - . .Ny,)

P = diag(P;)

i=in
calculate V , W

V= VP, W =Wy (2.4)

ili} calculate feedback gain

F(P) = —w*v ! (2.5)

here P; is arbitrary vector and if V is non-singular the F of
eq(2.5) assign the desired eigenvalues. So first assign the
desired eigenvalues and determine the eigenvector which
minimize the object function determined by {Q , R} weight-

ing matrices.

3. ROBUST OPTIMAL REGULATOR DESIGN

There are many researches that assign the desired eigen-
values and ortho-normal eigenvectors[12-15] using the fact
that when there is parameter perturbation the variations of
cigenvalues are relatively small if the system eigenvectors arc
ortho-normal. In this section, we represent the robust
optimal regulator design method using the previous optimal
regulator design method[10] with the robust regulator design
method [15]. By combining the performance index function
of optimal and robust regulator we can continuously obtain
the regulator from the optimal regulator to robust regulator.
The target system can be described as below and we assume

that the target system is completely controllable.
x(1) = Ax(t) + Bu(r), x(0) = X, 3.1)
x 1 nX1 state vector
u :mX1 input vector
A, B : system matrix(constant)

We explain at 3.1 optimal regulator design and at 3.2 robust
regulator design method. Finally, at 3.3 robust optimal regu-

lator method.

3.1 Optimal Regulator Design

Assign the desired eigenvalues and determine feedback
gain F which minimize the (3.2) performance index func-
tion[10].

1=

Jy =E { f(xTQx + uTRu)dl } 3.2)
1=0



here

Q

1 symmetric positive semi —-definite matrix

R : symmertric positive definire matrix

X, : random variable with E{X X OT} =/

E{}

: expectation function

3.2 Robust Regulator Design

There are many design method which assign the ortho-

normal eizenvector{12-15}.

Cavii12] use the fact that when the matrix made by
the column eigenvecters is ortho-normal then it must be
vy

= 1, so they define the performance index function to

be minimized by.

Jy=ar {U-VTV)} (3.3)

here 1{} means trace of a matrix.

Srinathkumar[13] used eq(3.4) as a performance index

to be maximized.

Jy = det(V) 3.4)

here detr() means determinant of a matrix.

Kautsky[15] also used eq(3.5) as a performance index

to be minimized.

o= k(V) (3.5)

here k() means condition number of a matrix.

There are more performance index that represent the
ortho-normality of a matrix and all these methods get the

same result[15].

When the order of matrix {A . B} is
(n X n ,n X m), in the case m=1, the solution when
exists, can be shown to be unique. Inthe case 1 < m < n,
various solution may exist, and, to determine a specific solu-
tion, additional condition must be supplied to eliminate the
extra degree of freedom. In the case m=n, the pair
{A . B}is always completely controllable, and any given
closed-loop system matrix can always be achieved by feed-

back [15].
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The relationship between the ortho-normality and tran-

sient response of x(¢) is as follows.
Property 1 :
Transient responsc of state x(r) satisfy the (3.6) ine-

quality.

Fe@) Iy = «(Vymax{ e” } X l,  (3.6)
J

Proof : Theorem 5 of [15]

Property 2 :

When the feedback gain F assigns the stable eigen-
values {\;} the perturbed system matrix A + BF + A is
stable for all A that satisfy the (3.7) inequality.

lAlly<min o {sI - (A+BF)} = 5(F)

s=iw

(3.7)

here o} means singular value and the lower bound of 3(F)
is
8(F) = min Re(‘)\j)/K(V) (3.8)
J

Proof : Theorem 6 of [15]

Property 1 means that the bound of transicnt response is

smaller as (V) is small. Property 2 means that as (V) is

smaller 8(F) becomes larger and that for the large perturba-

ticn the closed-loop system is stable.

3.3 Robust Optimal Regulator Design

Combining the performance index of 3.1 and 3.2 we

can define new performance index as eg(3.9).

J = at) + B, (3.9)

bere J, is performance index of optimality and J, is perfor-

mance index of robustness.

This new robust optimal regulator can be also obtained
by choosing a suitable pair of {Q, R}. But it is very difficult
to select good {Q, R} because there is no robustness index at
{Q. R}. So the new method is more systematic and easy to
get ¢ desired regulator.

When a # 0 and B=0 we get optimal regulator and if
a=0 and B#0 then we get robust regulator if we choose suit-

able @ , B we can get desired robust optimal regulator.



We showed 3 performance index of robustness at

eq(3.3)-(3.5).

it is difficult to select suitable a , B combination and eq(3.4)

Among them eq(3.3) has minimum value 0 so

is maximizing problem so we can not combine with minimiz-
ing problem. Finally ¢q(3.5) is a minimizing problem and
has minimum value 1. So we can easily choose weighting

factor a« , B for our desired regulator.

3.4 Algorithm

Previous optimal regulator problem can be converted as

follows [10].

J, = E{x,70,x,} (3.10)
and we can write again as
Iy = mr{Qy} (3.11)
here @, must satisfy eq(3.12)
(A+BF)Q, + Q{A+BF) + ¢ + FTRF = 0 (3.12)
Therefore the total performance index is
J = o (Q) + B*Fx(V) (3.13)
here 0 must satisfy eq(3.14)
(A+BFY O, + Q(A+BF) + Q + FTRF = 0 (3.14)

when we try to get a solution paramecter vector P we
can use 2 type method. First, if we can get gradient of the
performance index we can get the solution very fast using
some gradient-based minimizing algorithm but it is somctimes
difficult to get the gradient. Second, we can use the algo-
rithm that does not need gradient. This method is rather
slow but we do not have to calculate difficult gradient. Most
famous method of the latter case is multivariable simplex
method[17].

In this study, we do not have to calculate the parameter
So

we used commercial software package[18] which use mul-

vector fast because we design the regulator in off-line.

tivariabie simplex method.

4. OUTPUT FEEDBACK CASE

When we cat not access the all system states directly we
must feedback outputs. In that casc case we can use the

intuitive concept that :

8h4

min | F* - KC | (4.1
where
F* : desired feedback gain
K : outpur feedback gain

C

I output matrix

Kosut[19] proposed 2 methods to solve eq(4.1). First one is
so-called "minimum excitation method”. We can get feedback

gain as follows F° = KC.

F° = F'pcT(crcTyic (4.2)
where P satisfies eq(4.3).
(A+BF* )Y + P(A+BF*Y +1 =0 4.3)

F* : desired feedback gain
Second one is so-called "minimum norm method:. We can
get feedback gain as follows.

F° = F cT(ccTylc (4.4)

These two methods are very simple but they do not
guarante the stability of the closed-loop system. So we must
be careful when we use one of these method. And we must

have enough simulations before apply to a system.

The target feedback F * can be robust onc or optimal

one or robust optimal one.

5. CONCLUSION

In this study, we proposed the optimal regulator design
method for linear multivariable system using eigen-structure
assignment. This method has the merit that is does not
require the formulation of parameter or sensitivity function
using another variables and it can obtain the continuous
response from the optimal one to robust one. This method
uses the full degree-of-freedom of eigen-structure assigning

method. In output feedback, we introduced 2 type parameter-

based methods.
For the further study, we are trying to find a algorithm

which uses gradient to get the solution faster. And another

output feedback regulator.
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