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ABSTRACT

Texture provides an important source of inform-
ation about the three dinensionar¥ information
of visible surface, particulary for stationary
nonocular views.

To recover three dimensionary information, the
distorting effects of pro gectlon nust be distin-
guished from properties of the texture on which
the distortion acts.

In this paper, we show an approximated maximum
1ikelihood estimation method by which we find
surface orientation of the visible surface(hemi-
sphere) in gaussian sphere using local amalysis
of the texture. In addition,assuming that an or-
thographic projection and a circle is an image
formation system and a texel( texture element)
respectively, we derive the surface orientation
from the distribution of variation by means of
orthographic projection of a tangent direction
which exists regulary in the arc length of a ci-
rcle. we present the orientation parameters of
textured surface with slant and tilt, and also
the surface normal of the resulted surface orle-
ntation as needle map.

This algorithm was applied to geographic contour
and synthetic textures.

1. Introduction

One central problem of image understanding is
the recovery of three dimensional scene infor-
mation from a single two dimensional image. A
single two dimensional image is an ambiguous
representation of the three dimensional world,
many different scenes could have produced the
same image, yet the human visual system is
extremely successful at recovering a qual-
itatively correct characteristic from this
type of representation. Workers in the field
of computational vision have devised a number
of distinct schemes that attempt to emulate
this buman capability;these schemes are coll-
ectively known as “shape from intrinsic
properties"(e.g. ,shape from shading,shape fr-
om texture, or shape from contour}|3, 4, 7].

In this paper we consider the computation of
shape from texture.

Witkin[9,10] proposed an effective technique
for recovering surface orientation from images
of natural textured surfaces mpust rest on
texture descriptions that can actually be comp-
uted from such images, and must avoid highly
restrictive assumptions about texture geometry.
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More specifically, he related the texture of a
surfsce to the distribution of directions
of reflectance boundaries on that surface,
and posed the problem of how a uniform dist-
ribution of such direction is transformed
by projection. Once this transformation is de-
termined, the problem of recovering the surface
orlentation of a small planar patch of texture
based on observing the distributon of direction
in an image can be posed as a maximm likelihood
problem.In this paper we describe more efficient
algorithm, that is,approximated maximum likeli-
hood estimation of Local surface orientation,for
solving the shape from texture problem. This
method is more efficient for recovering surface
orlentation which is useful for large value{ta-
ngent distribution:n>100). In such cases, the
pricr distribution of surface orientation param
eters can be ignored and original surface ori-
entation can be simply recovered from the dis-
tribution of tangent direction.

2. Geometric Model

We assume orthographic projection and use the
geometric model used by Witkin[9]. Following
his notation we assume an ocbject plane S in
space with an orthogonal coordinate system(x’,
y'). there is also an image plane I with coor-
dinate system(x,y), The orientation of § with
respect to I can be denoted by two angles s
and t; the slant is the angle between I and S

( which we will always take to be acute.i.e.,
se{0 , /2]) and the tilt is the angle between
the projection of the normal of S onto I and
the x axis in I (t e[~-n/2, =n/2]). Figure 1
shows the relationships between I,S,s, and t.

The projective distortion on an orthographic~
ally projected planar surface is simple a one
dirensional scalling and compression in the
direction of steepest decent away from the
viewer(tilt) whose magnitude is the cosine of
the angle between the surface and the image
plane(slant).The slant and tilt representation
of surface orientation{13] {s related to gra-
dient space representation[16]. Figure 2 shows
the slant and tilt in gradient space.

We want to find the angles of their orthogra-
phic projection onto I with the x axis. First
let t=0. Then the projection of S's normal is
parallel to the axis,the y and y'axes are both
parallel to the line of intersection between
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T Fig.2 Representation of
and tilt
in gradient space

I and S and the angle between the x and x'axes
is s.Since in this case there will only be pr-
ojective shortening in the x direction by a
factor cos(s) it follows immediately that the
relation between an angle B in S and an angle
A in I is given by
tan(a)= tan(B)/cos(s) (2.1)

To 1introduce tilt, rotate the object plane
around the =z axis (which is perpendicular to
the image plane), keeping the slant constant.
The projected normal(and the projected x'axis)
then rotates away from the x axis over an
angle t. Since the projected line still makes
an angle A with the projected normal it now
follows that its angle a' with the x axis is
given by a'=A+t, or using (2.1), we obtain

a'=arctan(tan(B)/cos(s))+t (2.2)

arc length on a circle is uniformly distributed
over tangent direction,but the distribution for
an ellipse assumes maxima and minima in the

directions of the major and minor axes respect-
ively. For the projection of a circle,the dir-
ection of the minimm coincides with the tilt
direction, t, and the relative height of the

peak varies with the slant, s. The particular
tangent distribution obtained in the image
depends on the distribution prior to projection,

as well as the orientation of the textured surface.

3.2 Maximum likelihood estimation of surface
orientation{9,10)

For any hypothesized surface orientation, the
geometric relation translates each value of a'
into a corresponding value of B, and so trans-
lates the observed distribution of a' into a
corresponding distribution of B; a possible
distribution of B may be obtained for each
value of (s,t). Given an expected distribution
for (B, s, t), the likelihood of an observed
distribution at any hypothesized surface orie-
ntation can be evaluated. If B, s, and t are
treated as randomly variables,and a j.p.d.f.is
assumed for those variables,then (s, t) may be
estimated statisticaly.

We will express the uniform strategy by assu-
ming that tangent direction and surface orien-
tation are isotropic and independent.lsotropy
reasonably supposes that all surface orienta-
tions are equally likely to occur in nature
and that tangents to surface curves are equal-
ly likely in all direction. The statement that
all surface orientations are equally likely
requires clarification: the orientation of a
surface can be given by the unit normals,
a needle of unit length normal to the surface.
The set of normals (called the Gaussian
sphere[18] (Fig.3)) which contains the points
of the needles. When we say that all surface
orientations are equally likely, we mean the
needle is as likely to land at any one point

on the sphere as any other[9].

as the relation between a line at angle B with
the x'axis in S and a line at angle A with the
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3. Measuring Texture Distortion due to
Surface Orientation

Fig.3 The surface normal orientation exisiting
on gaussian sphere

3.1 Definition of the problem Most succinctly,it is assumed that the quant-

ities (B,s,t) are randomly distributed and

The tangent to a curve at a given point is de-
fined as the first derivative of position on
the curve with respect to arc length. The tang-
ent is a unit vector and may be visualized as
an arrow that t grazes curve at the spe-
cified point[9]. The distortion is demonstrated
by the projection of a circle to an ellipse:

their joint probability densi function

D(B, s, t) is given by R4

BéB, s, t) = -rsin(s) (3.2-1)
assume that the ranges of the angles are :

0<¢<s<r/2,0¢s«<n, 0¢CB<n. S?ﬁilarly,

the density of the (s, t) is given by

D(s, t) =4 sin{s). (3.2-2)



The independence assumption requires that the
image tangents §a':1< i < nf are statically
independent. That is, it is assumed that the
tangent directions at different points on the
curve are 1 t.

From (3.2-1) and transformation (2,2)

we find that the joint density D(A, s, t) is
given by

\ (o3 (3) $inCs)
D(A, 8, t) " RX oIt (A-€) 1 cast(A) sinTA-L) (3.2-3)

For the conditional density D(A/s, t) we find

D(A/s, t) = 1 coses) (3.2-4)
T Gogd( A~ + (O SIn L)

This density function tells us, under the ass-
umption of isotropy and independence for (B,s,t)
,how the image tangent direction is distributed
as a function of surface orientation. This
distribution is graphed at several at several
values of s and t in Fig 4.

We shall denote by A the sample §4. A, - An §

of the projected direction-and by D(A/s, t) its
conditional density:

DW/s, t) =} D(A/s, t) (3.2-5)
By Bayes' formula we obtain

D(s, t/A) = __ DO¢(hs® Do) (3.2-6)

HWAD(MS,ﬂD(&wa\sM
where integration is performed over the ranges
of s and t. Dividing by the integral simply
normalizes the function to integral 1.

The value of (s,t) for which this function ass-
umes a maximum likelihood estimated for surface
orientation and the integral of the function
over a region gives the pribability that the
surface orientation lies inside that region.
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Fig.4 Curves in the function D( A:<}s,t),plotted

against £, ,with t=0,at several values of
s

4. Obtaining the Estimators using approximated
Maximum Likelihood Estimation method.

4.1 Approximated likelihood function

From (3.2-8) it follows that for a likelihood
function L(s,t/ A) for the sample A = §h - Ang,
we can use the expression

Sines) cog™(s)
L(', t/ A) = .{;‘i\Cl~§W\‘C‘)S3n‘(h-t)‘J

(4.1-1)

< Algorithm >
This algorithm is only valid for large samples
of directions(tangent sample;n >100). We shall
begin by showing that for large n the termD(s,t)
contributes little to D(s, t ?:).
[1]. IF s is large
sin(s) 1s approximately 1
Thus, for large s, D(s, t) contributes little to
the expression of D(s, t/ A).
[2]. IF s is small
sin(s) is approximately s
cos(s) is approximately 1 -(s*/2)
ignoring high order terms
cos(s) 1is approximately 1-(n*s*/2).

Now since sin(s) sin{Ai-t) is bounded above 1,

[ 1 - sins) sin{Al - t )] is approximately [1+
sirf(s) sinlAi-t) ] again choosing to ignore the
high order term, z

{1-sinls) - siftAL-t))=[1+sin(s) sin(Al-t)] (4.1-2)

We can expand the product, and keeping only the
second order terms we arrive at the expression
J1+sifits) sinlai-t) ]3 14" 2 siflAL~t) (4.1-3)

Maximizing D(s,t/A) for small s and large n can
this be approximated by maximizing the express-
ifon

D(s,t/A) = s(1-3)(1+  $Z siMAL-t)  (4.1-4)
Hence we are interested in maximizing (4.1-4)
with respect to s and t.

< THEOREM >

Since the sum sin(Ai-t) does not involve s
directly, we can replace the sum by its upper
bound give

n
simfAi-t) < Tcagrce)

< PROOF >
The proof involves differentiating LOG L with
respect to s and t, and setting the sulting
expression to zero. This gives N

cos (%) Sin(g) i DN STn A

Siney) Naror TRE \-si».‘:s)s{n‘(t-hixi-l‘s)
We may simplify the first equation of (4.1-5)
by dividing it by sin(s)cos(s).Thus we obtain
the system to be solved in the form

LY WA o
Stwes) "7 &Zlm"’ R, = sinrmsiraplf-176)

To persue our strategy of solving (4.1-6) we

now derive an inequality involving s and t.
Making the substitution

M- = (4.1-7)

in the first equation of (4.1-6) we bring it
into the form
n Sin™AL—) YL

']«R %) SToRTA: —0) + Wi Br ) 3 M) =\_.x (4.1-8)
Denoting the left side of (4.1-8) by F(M),
we observe that F(M)—was M1 from right
and F(M)> 0 as M-soo . Since F is
decreasing we conclude that (4.1-8) has a
uni solution on (1, o ) for every sample
A =§A - A L. Assuming that M is a solution
of (4.1-7) we observe that we make the left
side of (4.1-8) smaller if we:

(a) multifly sin(Ai-t) by M in the denomina-
tor of (4.1-8), (b)ieave out the expressiony. .
t:lhus we arrive at the inequality

Sw®ths %) € Tgens,
Therefore, after replace the term cos(s) by 1+



, we are left with maximizing

S(l—\#&% )(\-mks’/;_) with respect to s.
LIEK
The maximum is obtained at s=——,as n increase,
s will approach zero,which uouid be the maximum
if the first term s were ID?ftt(;u:'a taply treat
Therefore we can ignore D(s,t)and 8 4
s and t as parameters to be estimated. Thus we

can simply maximize

oS ($)
= (4.1-9).
DUA Jot) Cos (h — ) + (683D ShTh-5)
The maximum of D( /s, t)
- *TL (1953 at A- 1:-:.7\/: (4.1-10)
The minieum of D( /s,t)
(05(5)
- * at A =t (4.1-11).
4.2.Approximated Estimator of Surface
Orientation.

1f we subdivide interval @7’2] in w subinte-
rvals {.......n of the samé length Mw and
derote by Hl....Hw the number of Ai's falling
ilt':a these intervals, respectively, we observe
that

7 2 DOAJs. ) i=leaeveoww (4.2-1)

where a is the center of the interval 1.
Denoting by Hmax and Hmin value of §H:is1...wf
nd deri 4.1-9)-(4.2-1

a ons_i snﬁ *r:§ ( )=( )

co3cy) T

+ = A 2TE (4.2-2)
where A* is center of the interval i for
H = Hnin.

Concluding we suggest the following formulas
for the estimated S and T

S= cog € W/ w-Hwax)
;where the sampling interval n is large value.
5. Computer simulation and results

(4.2-3)

We have presented a simple algorithm for the
estimation of the slant and tilt from a random
sample of the tangent directions.This algorithm
was applied to geographic contour and synthetic
textures. The computed results are presented in
Fig.5, Fig.6 respectively. The errors between
actual surface orientation and computed one are
presented in table 1 . Table Z represents an
example for (45,30).In order to achieve a unig-
ue maximum-minimum pair in this algorithm, the
subinterval size must be on the order of 10 (w=
%¥10). It was revealed that the error for
the original orientation was taken place mainly
by slant. This fact coincides with the results
of research by a series of psychologists{2].

In addition it may be said that the research
should be made under relaxed supposition since
the supposition of being isotropy is strong one
for natural image.

a
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(a) actual value (a') coq(xated value
(s.t)=(0,0) s

(b) actual value b")

ted value
(8,£)=(45,0) 573

(57.32,0)

(¢) actual value

(5. t)=(45,60) {c') computed value

(40.28,59.96)

Fig.5 an example applied in geographic contour

59 2 '4: el d
O ' ¢ 0 ,'

ted value

actual value 03759, 45.00)

(8, t)=(45,45)

Fig.6 an example applied in synthetic textures

Table 1. (a) The computed surface orientation

Belgiral Value Computed Valuw

Driginel Valuw Gempuled Valuse

Blant Tilt Blant Tilt flant Tiit

L o - ] o o 43 o 435.02
43 o 57,32 o o W@ 4 90
40 o 57.5% L] ° 130 ° 129,94

o m o Se.o1 || 30 ° e o

;— 0 - "(; ____ s9.9@ 30 30 33.79 sn,o;“
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L] £ 40,280 UY.%6 43 Jo 37,47 29.79
30 130 23. 40 :zv.vz 43 @0 ‘51.10 8v.%90
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20 a3 - Bl.26  A%W7 ;_o ..... ;;‘ 48.20 29,99
o n 73.37 89,93 &0 EL] %4.28 43,00
o0 " ° .34 B9, 9% 40 20 ¥7.43 99.91"
0 130 72,62 129.93 L4 130 44,17 129,91
20 ° 77,583 o h; ..... &n 75,34 39.95




(b) The computed error of surface orientation

Table 2. a portion of distributed
P tas 505 tangent angle
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