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System Dynamics: A Methodology for Testing
Dynamic Behavioral Hypotheses

TAE-WON SOHN anp JULIUS SURKIS

Abstract—The use of system dynamics as a methodology for modelling
and testing dynamic behavioral hypotheses in organizational behavioral
studies is presented. The system dynamics equivalent of March and Simon's
motivation model is constructed to study its behavioral consequences. The
dynamic behavior obtained from this approach is identical to the analytical
solution of the system of differential equations given in March and Simon’s
mathematical model. Three distinctive patterns of system behavior emerge
from the numerous experiments conducted with the model. Experimental
results leading to these patierns and additional results concerning the time
to reach equilibrium and levels for the satisfaction variable are discussed.

I. INTRODUCTION

Contemporary motivation theories attempt to explore the rela-
tionship between satsfaction and performance. The Literature is
diverse and consists of subtheories such as expectancy theory,
goal-setting theory, equity theory, need-satisfaction theory, and
reinforcement theory. Unfortunately, it is very difficult to syn-
thesize these theories into a coherent framework because, as
Schwab and Cummings {7] indicate, “there are few commonly
defined constructs across the various theories” that make rigor-
ous comparison and evajuation difficuit. The same authors as
well as others (e.g., Brayfield and Crockett (1]) also indicate the
lack of clear definition of major variables such as satisfaction.

Nevertheless, the various theories of motivation mentioned
above have helped to foster a better understanding of motivation
phenomena by empirical statistical studies and theoretical hy-
potheses. The empirical studies collect data at a point io time or
during an interval of time to examine relationships between
selected variables. Then a hypothesis is structured for the behav-

Manuscript received May 22. 1984; revised December 23, 1984,
The authors are with the Graduate Schoot of Management, Rutgers—the
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Fig 1. General model of adaptive motivated dehavior.

ior of the model based on the relationships between variabiles.
The model structure is an extrapolation of the “static™ statistacal
inferences without the means to verify or quarify the hypoche-
sized model behavior and variable interactioms over time. An
example of this type of hypothesizing from the motivation theary
literature would be the following [7, p. 415}:

Triandis hypothesized that organizational pressure for high pro-
duction influences both satisfaction and performmce, but not im
the same fashion. As pressure increases, job sazsfaction is hy-
pothesized to decrease irrespective of the concomuznt variation ux
performance. Employee performance, alternatively. 3 hypothesizext
to be curvilinearly related to productuon pressure.

Some researchers have expanded these verbal definitions wich a
model flowchart such as March and Simon [3} and Porter znd
Lawler [4]. In particular, the March-Simon modei also has pro-
vided a mathematical model. This model gives a multivarzate
framework for understanding the dynamic natwe of work mou-
vation processes. It includes the variables of what initiates. di-
rects, and sustains an individual’s motivation to produce. In Eact,
the March-Simon motivation model is one of “a few commcmly
defined constructs” that encompasses concepts of major mot-va-
tion theories such as need, expectation, behavior ror action), zoal,
and even feedback embedded in the systems ;erspective. This
model is often quoted in the literature. However. the multivarzate
character and the dynamic behavior of the modd have not teen
discussed in detail mainly due to the lack of a ;roper methodol-
ogy.

We will analyze the March-Simon model sing system dy-
pamics to illustrate a prototype methodology for the modelling
and testing of dynamic behavioral hypotheses.

II. THE MARCH-SIMON MODEL

March and Simon {3, pp. 48-50] suggest a zeneral dynazmic
model of the individual motivation process (e Fig. 1). The
model is based on the following five propositions

1) the lower the satisfaction of the orga~sm, the more
search for alternative programs it will underike,

2) the more search, the higher the expered value of
reward,

3) the higher the expected value of reward. e higher the
satisfaction,

4) the higher the expected value of reward. e higher the
level of aspiration of the organism, and

$5) the higher the level of aspiration, the i~wer the satis-
faction.

Furthermore, these propositions were embodiel in the follow1ng
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mathematical model: satisfaction
Y Desired Level of * -
Satisfaction
7-a(R—A+a), a>0,a>0 (1) ala\’
4 © Search Aspiration
S=R-4 2
) N
L=8(§-5), §>08>0 (3)
+ Expected Value
dR of Reward
—— = y(L - b-cR), v>0,6>=0,¢>0 (4)

dt

where S, A, L, R, and S denote satisfaction, aspiration, search,
expected value of reward, and the desired level of satsfaction,
respectively.

March and Simon have posited that the aspiration levei exceed
the reward level at an equilibium because a is positive in (1).
They also postulated that the scarch for increased satisfaction
would cease at a desired level of satisfaction S in (3). Finally,
they bhave assumed that a certain amount of search (b + cR) is
required to maintain the current level of reward R. Based upon
these postulates, they have asserted that the system of such a
dynamic process reaches a stable equilibrium.

The system of differential equations would have to be solved to
see how the model behaves in the transient state, when and if it
reaches equilibrium. We give the solution to the system of dif-
ferential equations and also provide a system dynamics modelling
approach which is an alternative to the “exact” solution of
systems of differential equations. It will be shown that a properly
constructed system dypamics model is equivalent to the
March-Simon differential equation model. First, we present a
brief introduction to system dynamics.

III. SysTem DyNaMicCS

The analysis of complex systems consisting of many interre-
lated and interactive components was made possible by several
developments; feedback-control theory, large-scale digital com-
puters, sophisticated simulation languages, and a better under-
standing of decision making processes.

System dynamics was developed by J. W. Forrester {2] and his
group at M.LT. (5], (6] in the late fifties and early sixties. System
dynamics is a quantitative methodology based on a general
systems approach. It helps comstruct a causal-loop theory of
system behavior in terms of feedback linkages. It also deals with
the dynamic processes of a complex system based upon informa-
tion processing theory. Furthermore, system dynamics provides
an experimental tool (simulation modelling) to analyze the dy-
pamic behavior of a system. This methodology has been widely
used in the areas of production planning, urban planning, eco-
nomic planning, and corporate policy studies. However, the value

Fig. 3. Causal-loop diagram of the March-Simon modei {3. p. 49].

of this methodology to analyze the dynamic behavior of a system
has not been fully recognized in organizational behavior studies.
Theoretical fundamentals of system dynamics associated with
various paradigms in organizational behavior studies have been
discussed in detail elsewhere [8]. (In (8] the authors discuss the
concepts and details of constructing a system dynamics model as
well.) Here, we will briefly outline the key concepts of system
dynamucs.

System dynamics analyzes a system in terms of cause and
effect relationships by positive and negative feedback loops. This
is an interim phase in the quantitative conceptualization of the
system. (The concept of feedback loops has been used qualita-
tively in the behavioral literature by Weick {9].) This is followed
by a more precise flow diagram which descnibes the system in
terms of two fundamental components: system states and system
activities. The states of a system represent the values of system
variables at points in time and these values may change as a
result of activities and decisions during some time penod. Infor-
mation on the state of the system may be fed back and used to
change future acuvities and decisions. In the framework of sys-
tern dynamucs states are represented by fevels, whereas activities
or decisions are represented by rares. In psychological terms
certain cognitive states such as memory, perceptions, or attitudes
can be regarded as levels. Whereas forces or actions to change
these cogmitive states such as learning, comparing, or adapting
can be regarded as rates.

The level is the present value of a variable that resuits from the
accumulated difference between inflows and outflows of rates.
The rate corresponds to an activity, which is the present flow
between lcvels in the system. For instance, a current level of
memory is an accumulated state resulting from the difference
between a learning rate and a forgetung rate. A rate is de-
termined by the levels of the system according to relauonships
indicated by the decision functions that define a rate. In turn, the
rate determines the level. The rate is often determined hy aux-
iliary functions denved from levels or from exogeneous vanabies.
The decision function is a statement that deterrmunes how the
available informauon about the level leads to the decision that
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may influence the level. It is called a rate equation. An informa-
tion channel is the connection between a decision function and a
level.

One important factor to be included in the model is the time
delay. The model should permit time delays “to be presented
both in average duration and in transient characteristics, in close
agreement with our knowledge of how the delays are actually
created” {2, p. 62]. Fig. 2 is an example of a flow diagram with
key concepts.

Technically, all components of the model can be expressed by
mathematical equations. For example, 2 level equation is

level (¢) = levei(r — 1) +(Ar)(rate A — rate B).

This equation represents the accumulation of a leve! variable at a
particular point in time . Additional values of a level are
recalculated at intervals (Ar) over time. It is clear that the smaller
the time interval, the more precisely the level can be monitored.

The causal-loop diagram of the March-Simon model is given
in Fig. 3. The flow diagram based on this causal-loop model is
given in the Appendix (see Fig. 15). The detailed flow diagram is
then translated into a set of equations that can be interpreted by
Dynamo, a specialized computer simulation language. Dynamo is
a simulation language that provides a view of the feedback
system described by equations as if it were continuous over time.
This is accomplished by examining the system at (A1) intervals of
time. (The smaller the (Ar), the more precise a view we get of the
dynamic behavior of the system.) Dynamo provides both numeric
and graphic output on all the system elements. System equations
of the model are given in the Appendix (Fig. 16).

IV. VALIDATION OF THE SYSTEM DYNAMICS APPROACH

Before performing various simulation experiments with the
March-Simon motivation model, we provide a validation of the
methodology. First, March and Simon’s mathematicai model is
solved analytically (given in the Appendix). With the assignment
of parameter values as given in the Appendix, a specific function
for each system variable is derived in terms of time ¢ as follows:

R(7) = — 8407 . ¢~ #1950 L 2593 . 02618050 4 1] (5)
A1) = —1.3603 - 738910 4 1603 - ¢7 76500 1 12 (6)
S(t) = 5196 - ¢ () _ 4196 . g7 261805:(0 _ ) (7
L(r) = — 5196 e™3195() 1 4196 - ¢ 28185°0 4 11 (8)

where R(r), A(t), S(¢), and L(¢) are the time related functions

O 2 4 6 810121416 182022242628 3032343638

40 42 441 46 48
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o

Output of the analytical solution.
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Fig. S. Basic model output.

for expected value of reward, aspiration, satisfaction, and search
activity, respectively.

These functions are plotted using a Fortran function genera-
tion program. Fig. 4 is the output of the above functions.

Second, with the same parameter values used in the solution of
the differential equations, the system dynamics version of the
March-Simon model is run. The output is shown in the Fig. 5.

The two outputs clearly show the identical system behavior of
the model through time. (Technical differences of plottng scales
are due to the usage of different plotting routines.) The fact that
the two solutions are identical shouid not come as a surprise.
Dynamo’s central function is to solve sets of simultaneous dif-
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ference equations. The task for the model builder is to translate
or quantify the system entities properly. Thus we can conciude
that the March-Simon model was properly modeled in terms of
system dynamics.

It is also clear that as one considers more complex feedback
systems, formulating and solving the system of differential equa-
tons become more difficult. However, the construction and solu-
tion of a system dynamics model of a complex behavioral system
need not require the same degree of mathematical agility required
by the formulation and solution of differential equations.

Since we are simulating a system, the results are particular to
the set of parameters used. Thus one would have to solve the
system for various parameter values in order to gain an under-
standing of the system under different conditions.

V. MODEL EXPERIMENTATION

Having demonstrated the equivalence of the system dynamics
model to the original model formulation, we now explore the
behavior of the system under different parameter settings. The
summary of parameter values used in the indicated experiments
of the model is given in the Appendix. We will use the settings
that result in Fig. S as the basic model output for comparison
purposes.

The basic output shows that the system does reach a steady
state as March and Simon indicate. Furthermore, the output
clearly shows us the transient behavior of each variable before
reaching equilibrium. The transient mode of the total system as
represented by the system variables is the dynamic process of
motivation that March and Simon have stated verbally.

In order to prove the robustness of the model, the basic model
was tested with different initial values of the variables using the
parameter settings of the base case. Fig. 6 is an example of one of
these experiments with initial values of R = .S and 4 = .5. These
experiments show that the system reaches the same levels of
steady state, but with a different transient behavioral processes. It
can be concluded that the system reaches the same steady state,
no matter what initial values are assigned to the model. Hence,

318 s
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Fig. 7. Output with y = .5 (flower expected value of reward).

we can state that the March-Simon model is robustin this sense.

Next, the model was tested with different parameter values
having various behavioral implications.

Fig. 7 is the output resulting from the case where a lower
parameter value for y = .5, where y is the coefficient related to
the inflow rate of reward, is used as compared to that of the basic
model (y = 1). This can be viewed as representing behavior with
a lower expected value of reward. The output shows a different
motivation behavior from that of the basic model output (Fig. 5).
Before the system reaches equilibrium, a lower satisfacuon peak
results as compared to that of the basic case. This is due to a
lower expected value of reward (EVR). One can interpret this
case as the behavior of a person who anticipates (or actually
receives) a smaller reward from the same amount of search (or
effort) thus experiencing lower satisfaction (SAT).

At equilibrium, EVR and aspiration (ASP) reach lower levels
than those in the basic case. However, search (SER) and SAT
reach the same levels as those in the basic case. The reason for
this is that the model assumes the same goal level of DSAT
(desired level of satisfaction) as the basic model does. Thus the
discrepancy between the dissatisfaction (due to the higher ASP)
and the DSAT sustains the search at the same level in equi-
librium. This is what Schwab and Cummings [7] verbally state as
to the “need-deprivation” assumption underlying the March-
Simon model.

Fig. 8 is an output where a lower parameter value of (¢ = .5) is
used as compared to that of the basic model (¢ = 1). As shown in
(4) in the mathematical model, ¢ represents the outflow rate of
the expected value of reward. Decreasing the value of ¢ implies a
higher level of expected value of reward than that of the basic
model, due to the reduction in the outflow rate of the expected
value of reward. A person who anticipates (or actually receives)
higher rewards from the same amount of search (or effort) feels
greater satisfaction. At equilibrium. however, SER and SAT
reach the same levels as Figs. 5 and 7. The reasons for this are the
same as those discussed above regarding the output n Fig. 7.

Fig. 9 shows the output with a lower parameter -~alue of
(B = .5). The basic model parameter value was (8 = 1; Since 8
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Fig 10. Three types of system behavior.

is a coefficient related to the intensity of search, this change
implies that the search rate will be less than that of the basic
model. Thus, a person who exerts less search (or effort) would
anticipate or receive a smaller reward and experience a lower
level of satisfaction, other things remaining the same.

From these figures, it seems ciear that the SAT variable always
reaches the same level at steady state (—0.1), no matter what
values are assigned to other variables. This is due to the constant
a in (1). (A value of .1 was assigned to a in these experiments.)

The next set of results deals with parameter settings that reveal
three distinctive modes of system behavior. These will be referred
to as type I, type I, and type III behavior patterns. (See Fig. 10.)
The three distinctive patterns that emerge are mainly due to the
coefficient ¢, which is related to the outflow rate of the expected
value of reward (or duration of perception regarding the obtained
EVR). Assuming the type I bebavior patterm as a “pormal”
behavior case, the type II pattern can be interpreted as an
“opumistic” behavior case, whereas the type III pattern can be
interpreted as a “pessimistic” behavior case. That is, a person

who anticipates higher value of outcome from a given level of
effort can be characterized as an optimistic person, and wvice
versa.

By varying the parameter values in certain :ombinations. one
can gain insight into two aspects of system bezavior: 1) the 1me
to reach equilibrium and 2) the highest peak >f the sausfacton
level.

In summary, the system behaves as follows e Table I):

1) The higher the EVR (eg., v), the hicter the satisfac-
tion level peaks and the later the systez reaches egus-
librium.’

2) The higher the EVR (e.g., y = yc). the higher e
satisfaction level peaks and the sooner thz system reaches
equilibrium.

3) The higher the ASP (e.g., a), the lower the satisfaczcem
level peaks and the sooner the system reaztes equilibriv=.

4) The higher the intensity of SER (e.x. 8), the higher
the satisfaction leve} peaks and the later the system reaczes
equilibrium.
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TABLEI
SYSTEM BEHAVIOR AS A FUNCTION OF VARYING PARAMETER VALUES
Time for
Parameter Changes  Time to reach Equilibrium  SAT Values at Equilibrnium Zero SAT
a B y +yc SAT EVR ASP SER Height SER EVR ASP SAT (inpenods)
1) 1 1 05 123 23 22 18 0.103 11 035 065 -01 2-3
11 1 I 29 26 27 25 0.225 11 11 1.2 -0.1 4-5
11 2 41 40 41 36 038 11 22 2.3 B} -01 7-8
2) I 1 05 05 137 35 36 i1 0147 11 11 1.2 =01 4-5
1 1 1 29 26 27 25 0225 11 L1 12 -01 4-5
11 2 2 2% 22 4 22 0264 11 11 1.2 -01 3-5
3) 05 1 1 49 45 48 43 0312 11 11 12 -0.1 7-8
1 1 1 1 29 26 27 25 0.225 11 11 12 -01 4-5
21 1 T 20 17 18 16 0.115 11 11 12 -0l 2-3
4) 105 1 1 23 23 22 22 0103 0.55 055 065 -0.1 2-3
1 1 1 29 26 27 25 0.225 L1t 12 -0.1 4-5
1 2 1 14l 40 41 29 038 22 22 23 -0.1 7-8
The above statements demonstrate that March and Simon's
mathematical model is consistent with the verbal propositions .
they state. Beyond that, the experiments give an indication of the High VR (re2, rest)
time required for the system to reach a steady state. AN Bace Cace (rel. reel)
Table I indicates which vanable reaches a stable equilibrium N se base '
first and which variable exerts the major influence on the pattern ¢ f—— )
«of system behavior. In particuiar, the former provides a clue for N o
exploring the relationship between satisfaction and performance,
which is search here, underlying the March-Simon model. (a)
In every case, SER reaches equilibrium first, and SAT reaches .
equilibrium last: the higher the search, the higher the satisfaction J—
level peaks and the longer the satisfaction level is sustained until p\ o en R
it reaches equilibrium. (Also, see Fig. 11(d).) This result indicates 2N ﬁ,’:em
that the March-Simon model fits into the * performance-satis- ° . e
faction” theory. Schwab and Curmnmings [7] cautiously classify the
March-Simon model as such. (b
Fig. 11 is based on the results given in Table I to IV focusing
on the SAT level. Fig. 11(a) shows that the higher the inflow rate
of EVR, the higher the SAT level peaks and the later the SAT N Low AP
level reaches equilibrium. In Fig. 11(b), the higher the rates are ! \\ care Case
with respect to EVR (e.g., vy = yc), the higher the SAT level ok T
peaks at the initial period, but this also leads the SAT level to T (e
reach equilibrium sooner. This is mainly due to the dominance of S~ WA T T
ASP. The dominant role of ASP is clearly shown in Fig. 1l(c). 19!
where the higher the ASP, the lower the SAT level peaks at the
imtal period and the sooner the SAT level reaches equilibrium. i as
This can be interpreted as the behavior of a person who has a NG
higher level of aspiration and feels less satisfied given the same /f\< 2ase Tase
levels of anticipated (or actual) rewards and performance (or ai N = e
search). In summary, the ASP level exerts a major influence on el i T T _d
the interactions among variables in the March-Simon model. @
Fig. 11. Graphic illustratons of the system behavior focused on SAT. (at

So far, the expeniments have strictly followed March and
Simon’s bounds in their mathematical model. One can explore
the consequences of relaxing some of the model assumptions
given in the March-Simon model. If the assumption in the
equation related to aspiration 1s relaxed, the model may not reach
a steady state. In (4), March and Simon assume that the inflow
(v) and the outflow {yc) of the expected value of reward can be
different. In (1), however, they do not allow such flexibility for
the rates of aspiration. If the assumption in (1) were to be relaxed
similar to that of (4), it would not be a radical or "abnormali”
assumption. With this relaxation, one can observe two modes of
unusual behavior. Figs. 12 and 13 are the cases with lower and
higher aspiration modes respectively as compared to the basic
model. In Fig. 12, satisfaction reaches a positive level at equi-
librium. This output represents the typical behavior of a person
who has lower aspiration. Since the aspiration level is lower than

SAT depending on y (inflow rate of EVR) (b) SAT depending on vanous
EVR (v = yc). (¢) SAT depending on ASP (a). (d) SAT depending on SER
(B).

the expected value of reward, given the same level of search, the
person feels greater sausfaction with less search. It can be inter-
preted as the realistic behavior of a person who s not very
ambitious. In Fig. 13 the system never reaches an equilibrium: it
exhibits unlimited growth. This represents the benhavior of a
person who has extremely high aspirations.

In the experiments so far, the parameter values were assumed
to remain constant through time. This assumption implies a
deterministic behavioral pattern. In the context of system dy-
namics, this assumption can be relaxed and one can model
probabilistic behavior over time. Fig. 14 is an illustration where
the parameters are selected from specific normal distributions
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over time. Although the system behaves with fluctuations over
time, the general shape is not different from the basic output and
s, reaches a similar steady state.
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The purpose of this paper was to demonstrate the usefulness of
the system dynamics approach as a prototype methodology to
deal with the dynamic aspects of orgamzation behavior studies.
As shown. system dynamics provides an analvsis of both the
steady state behavior and the transient behavior of the
March-Simon motivation model, which had not been attempted
thus far mainly due to the lack of a relevant methodology. This
methodology yields the dynamic consequences of hypotheses
concerning relationships among the variables in the model. Fur-
thermore, it does not necessarily require extensive empincal data
for model construction. Rather, it may pinpoint the cntical
nature of certain vanables prior to conducung the actual re-
search. Empirical studies can only make inferences on subsystems
or components of the larger model. There 1s a need to study how
different inferences on “components” fit together. The system
dynamics approach clearly demonstrates its great potential to
deal with these unresolved issues in the current state of motiva-
tion theories as well as in other areas of orgamzation behavior
research.
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APPENDIX

THE MARCH-SIMON MODEL

The detailed flow diagram is shown in Fig. 15. The Dynamo
system equations are provided in Fig. 16.

Analytical Solution

March and Simon’s model is solved analytically as follows.
Given (1)-(4) replace L in (2) using (3) and (4). Thus

7 (9

Take the second derivative of (9), and replace d4 /dtr with (1)

YBA ~(¥B + Y} R + ¥BS ~ vb.

d*R dA dR
e B —(vB +ye) -

- B(a(R - A +a)) ~( + ye) (10)

Replace 4 in (10) with rearranged (9) in terms of 4
2

‘:—}: +(a+ 8+ yc)% + aycR + yab — ayBS - ayBa = 0.
t

Let(cl) = (@ + yB + yc), (¢2) = (aycR), (¢3) = yab - ayfS
— ayBa. Then

2
de+CI%—§+c2R+C3-0. (11)

From (11), the general solution for R(¢) is
c3

R(t)y=1-¢e"'+J %" =

(12)

ASP /

Aspiration

(L2)

Inflow

Detailed flow diagram of the March-~Simon model.

* MARCH AND SIMON‘S MOTIVATION MODEL

NOTE
NOTE
Y

NOTE
NOTE
NOTE

where

and

EQUATION (2) IN THE MODEL
SAT . K=EVR.K-ASP.X SATISFACTION
EQUATION (4} IN THE MODEL

TVR.X«EVR.J+(DT) (INEVR.JX-OTEZVR.JK]) EIPZCTED VALUE OF REWARD

EVR=NEVR INITIAL VALUE OF EVR

INEVR KL= (GAMMA )} (SER.K) INFLOW RATE JF EVR
GAMMA =L PARAMETER OF INEVR
QTEVR.KL=(PHI ) (EVR.K} OUTFLOW RATE OF EVR
PHI=L PARAMETER OF CTEVR
EQUATION (3) IN THE HODEL

SER.X=(OMEGA} {DSAT-SAT.X)
OMEGA =1
DSAT«1

SEARCH ACTIVITY
PARAMETER OF SEARCH
DESIRED LEVEL QF SATISFACTION

EQUATION (1} IN THE MODEL
ASP.RaASP, J+{OT) {INASP. IK-OTASP.JK) ASPIRATION LEVEL

ASPeNASP INITIAL VALUE OF ASPIRATION
INASP. KL= {THETA) (EVR.K+CONST} INPLOW RATE OF ASPIRATION

THETA=L INFLOWRATE OF ASPIRATION

CONST» .1 {A) IN THE MODEL FOR ASPIRAT!ZW
QTASP.XLw (LAMDA} (ASP.X1 OUTFLOW RATEZ OF ASPIRATION

LAMDA«1 PARAMETER CF OUTFLOW RATE OP ASP

INITIAL VALUES

NEVR«0
NASP=Q

CONTROL CARDS

OT=.01/LENGTH»?5/PRTPER«0/PLTPER~ .5
SAT.EVR.ASP,SER

SAT=S EVR«E ASPeA,SZReR{-.2,2.5)
BASIC

Fig. 16. Dvnamo equations for the March-Simon model

1 —cl + Vel? - 4ct
r 2

’2 - ~cl - Vel? - 4¢2
2

(A2}
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TABLE IT
SUMMARY OF EXPERIMENTS WITH THE MARCH-SIMON MODEL'
Time to reach Peak of
Experiment Theta Lambda Gamma Phi Omega Equilibrium  Satisfaction

Basic 1 1 1 1 1 29 0.225
3 1 1 0.5 1 1 23 0.103
3 1 1 1 1 0.5 23 0.103
4 1 1 1 1 2 41 0.389
5 1 1 1 1 4 beyond 50 0.566
6 1 1 0.5 1 2 29 0.225
7 1 1 0.5 0.5 2 49 0.295
8 0.5 0.5 2 1 1 beyond 50 0.494
9 2 2 1 1 1 20 0.115
10 2 2 1 1 0.5 17 0.025
11 1 1 2 2 1 25 0.264
12 1 1 2 1 1 41 0.389
13 1 1 1 2 1 20 0.133
14 2 2 2 2 1 16 0.139
15 2 2 2 1 1 26 0.248
16 2 2 1 2 1 13 0.041
17 1 1 2 2 2 37 0.429
18 1 1 2 1 2 beyond 50 0.566
19 1 1 1 2 2 25 0.264
20 1 1 0.5 0.5 1 37 0.147
21 1 1 4 4 1 23 0.268
2 2 2 0.5 0.5 2 35 0173
23 2 2 1 1 2 26 0.248
24 2 2 2 2 2 21 0.283
25 2 2 4 4 2 19 0.292
26 0.5 0.5 0.5 0.5 0.5 44 0.102
27 0.5 0.5 1 1 0.5 38 0.167
28 0.5 0.5 2 2 0.5 35 0.209
30 0.5 0.5 4 4 0.5 34 0.217
3 05 0.5 1 1 1 49 0.312
31 2 2 1 4 1 9 0.000
33 4 4 1 4 1 5 0.000
34 2 2 0.5 1 1 17 0.026
35 4 4 0.5 1 1 14 0.000
36 1 1 1 2 0.5 17 0.046
37 1 1 1 2 4 37 0.429
38 1 1 1 4 1 14 0.000
39 1 1 1 4 2 19 0.135
40 1 1 1 4 4 24 0.268

' The parameters are identified as

Theta and lambda = the parameters related to aspiration

Gamma
Phi

= the parameters related to the inflow of expected value of reward
= the parameter related to the outflow of the reward

Omega = the parameter related to the search.

The parameters a, S, and b of the model remained the same in all expenments: a = 0.1,

S=1.and b=0.

To decide the boundarv conditions, let mmiual R(r=0)=0
and R'(r=0)= Rl and  er parameter values be as follows:
S=1a=1b=0,¢c=.,a=1,8=1, y=1, and initialize
R =A =0. From(2)

dR

Gl R=0

=y(L-b-cR{t=0)} =L

From (3)
L=B(§-8)=1
C.R(0) = Rl = 1. (13)
From (12)
R(t=0)=Ry=I+J-¢c3/c2=0 (14)
and
R(t=0)=Rl=rt-I+r2-J=1. (15)

The ¢2, ¢3, rl, r2 are all known from parameter values. Hence
from (14) and (15) / = — 8407 and J = - 2%93. Thus

R(1) = ~ 8407 - e '~ 2593 . ¢ "+ 1.1
where r1 = — 38195 and r2 = -2.61805.

From (9), we get A as follows:
1 {dR .

GG OB YR =85 - yb)
dR
-5+ 2R -1
R(1) +2R(¢) — 1.

(16)

A =

CLA() =
From (16), we get
A(t) = —1.3603 - ' + 1603 -7 "+ 1.2.
From (17) and (18), S(¢) can be denved as fclows:
S(e) =R(1) - 4(1)
= 5196 - e "~ 4196 -7 — 1.

17)

(18)

(19)



