Fz24 22238 Y& £ ZE o] Toolo] A

-4
)]
a3
]
a
]
ol
Mo

o]
°] gg*

* AHEN 89

]
q

22299 Tool 2 WY

YEt P pue N 2w o) gy

eTITLT WL

Software Tool Development for Structured Programming

Dong Choon Lee*, Seong Jong Kim*; Chang Bok Kim}*
* Samsung Advanced Institute of Technology

Abstra@t
The purpose of this study is to
develop a systematic tool which can
reduce the abstractness of the

structured programming disciplines by a

system. The system is an interactive

software which forces the user to think

and write software in a hierarchical

stepwise refinement fashion for an

implementation of the software design.

The program produced by the system has a

program control structure and a logic
flow which are very easy to recognize.
The modification of a program is,
therefore, easier to attain by altering
the specifications of the modules
involved. It is possible to reduce the
programming errors bécause of those
characteristics.
I. Introduction
Structured programming may be

summarized as building a software system

in stages of hierarchical levels, at
each level hiding out some of the
physical details to successive lower

levels which is sometimes termed as top-

down design or levels of abstraction.

It suggests a certain set of disciplines

- 1140 -

In Chul Shin** Sang Burm Rhe&*
** Dept. of Electronics, Dankook Univ.

and guidelines to be followed in the

development of softwares. Most of the
guide lines and disciplines are abstract
in nature, which is not a surprise since
it needs to be appled in a wide range of
softwares and on variety of languages.

The structured programming can be

disseminated for its many

advantages over conventional programming

techniques. Yet, with the 1lack of
precise and less abstract guidelines,
the structured programming may well be

misinterpreted or may result in a bad

software design. It may not be claimed

that we can do away with the abstract

nature of the structuredness of a

software, " but we may reduce the

abstractness of the structured

programming disciplines by a system

which forces a programmer to follow

certain essential set of rules, such as,

stepwise refinement disciplins, using

subprogram in the devlopment stages.

II. System Design

As mentioned in the previous

section, we need a systematic way to

implement a structured sofware

hierarchically. Hierarchical top-down

well taken

1987% % @WHR - ETI Y

Aihik& &XHE 87/7

design (program design) is mainly based

on the idea of levels of abstraction

which beccme levels of modules in a
program. If we use the levels of
abstraction, we can call it a modular
design. The main idea of our system is
based on the modular design. We can
divide our system into four programs
which perform four functions:

1) Accept ~- specify modules.

2} Merge ~-- merge the lower level
module specification into the higher
level modules.

3} Enter -- accepts input conditions

for transition from a module to anocther,
4) Genpro -- generates Pascal program.

Developing complete specifications

of a module at once is difficult in the

early stages of a design. It will be

easier for a complex operation to build

specifications in a hierarchical form

leaving a certain amount of details to

be refined later. It is defined as a

compound module with an abstract meaning
which wil be refined.

The specification for a module

which contains high level

specificaations are called "base module

specifications."

The corresponding
refinement for a compound module is
called a *refinement module
specification.,” Furthermore, a module

in base module specification which has

to be refined is called the "target

module.”

A. Producing the Modules

In the proposed system, a program

called “accept" is developed which

interacts with the user for accepting

the specifications of each module.

Processes in a module can be represented

by their states and transitions. Each

- 1141~

state xepresenté the current condition

of the process, which is a progress of ’

exchanging messages (program control)

between wmodules (procedures). In each

module, there are some processes to be

executed before the program control is

transferred to another module. A state

can be classified as either a wait

state, a loop state, or a default

transition state.
In a wait state,

an initializing

sequence of processing will be done.
The input conditions will be checked to
decide the module to which the program

control has to be transferred. If there

are no conditions for transition, the
process will remain in the wait state
until an input condition meets the
condition for transition.

In a loop state, the necessary
sequence of processing will be done
repeatedly until an input condition is
satisfied. if input condition is
satisfied, the program control will be

transferred to another module accoxding
to the input condition,

In a default transition state, the

transition to another module, which is

specified by default transition, will be

done if every input condition does not

match. Regardless of the module

specified in the default transition,

appropriate transition will be

accomplished if there are any matching

input conditions, Here, all input

conditions are represented as mnemonic

for convinience. It will then be

changed into boolean, numerical values,

or characters according to the

necessity. Refinement module

FZ24 22 add Y 2T E o] Toold A

specification will follow the same steps

as base module specification. Tiere are

no limitations on - zspeating the

refinement step until it meets the goals
of a module. The condition of program

controls will be indicated later and

then be stored in another file for easy
modifications.

In that manner, if a

programmer wants to modify the types of

numerical values of the program control,.

all he has to do is change . the
specification table instead of changing
the program itself. Therefore, the

functions of lower-module will not be

affected by the changes in the program

controls since those controls flow from
the higher-module to lower-module.
B. Merging of Modules
A program called "merge” is

developed for accepting both the name of
a file for base module specification and

the name of a file for the refinement

module specification. It will also

merge them automatically to generate a

merged file. Two files are merged into

one file physically, but the base module

specification will be logically

compouhded with the refinement module

specifications. This merging process

could be repeated as many times as

needed until the final (lowest) module

specifications ar derived. When we

merge two files, we may have the problem
of introducing multiple transition into
the

separate modules of the refinement

module structure. For example, suppose

we have a base module specification
consisting of three modules, and a
refinement module specification

consisting of three modules for module 2

- 1142 -

(target module) shown. in Fig} 1. When

we merge those two together, we have two

input conditions, input 12 and input 32.

These conditions are from other modules

to module 2 which has to be refined. We

need, therefore, to introduce a dummy

module which is added to the beginning

of the refinement module structure in

order to keep the structure of

refinementt module specification

identical with the structure of base
module specification. (see Fig. 1 (c}")
By doing that, all transitions enter the
dummy module and then it will be removed
in a later step. Table 1 is an example

of dummy module specification.

(a) Base module stace
diagram

\
injuel
“ODULE
&\~iiq//

inpue222

MODULE
{ 3 } inpuedd

NS
(b) Refinement module State
diagram

MOWULE
3

(c) Reorganized refinement module
state diagram

Fig, 6. State diagram for dummy module.

TABLE)

DUNMY MOMILE SPECIFICATION

dummy (moulule name)

beyin sub Subpruocess
eupty Pare

end sub

input 12 module 21 Modulae

input 32 sodute 20 tranaition Part

end _wmbule

1987 %)

Bk HXE 87/7

C. Entering Boolean Condition

A program "enter® is developed for
accepting the actual values of input
conditions for each module of the lowest
(final) medule specificattion, finding
out every minterm covered by the input
mnemonic and storing those information
in a table form termed as “condition

specification.”

D. Generating the Program

For generating the program, a
~program called “genpro" is developed.
"Genpro" generates the Pascal program
with the final module specification and
the condition specification in a way
that each module is programmed as a
procedure, and the transfer of program
control from a module to another is
attained through procedure calls. To
maintain an idea of top-down development
of a design, it is effective to make the
procedure calls from a present
procedure, We possibly have, therefore,
a problem of infinite procedure calls.
But in our system, there is a capability
of having infinite procedure calls.
Because '"genpro® preprocesses the final
module specifications and removes the
calls from within the each procedures
and places them in a table in a main
program. The program control will be
driven by Vthe table .so that wuser’s
specifications for refinement will not
be affected. But “genpro" translates
the specifications into an executable

form.

III. Conclusion

An interactive software system,

which forces the user to think and write
software in a hierarchical stepwise
refinement fashion, has Dbeen brought
inte activity to furnish the developer
vwith a systematic tool for a
implementation of the software design.
Our system is adaptable to a mini-
computer environment. The program
produced by the system has a program
control structure and a logic flow which
are very easy to recognize at a glance.
The modification of a program is,
therefore, easier to attain by altering
the specifications of the modules
{procedures) involved, It is possible
to reduce the programming errors because
of the above mentioned characteristics,
also.

Though our system does not intend
to convert the pseudo code completely
into the Pascal code, it accommodates a
tool for a systematic specification and
implementation of a softwaare design.
Implementation of the system in
perrsonal computer and enhancement of
the system with more functions can be

defined as further research areas.

REFERENCES

{11 E. F. Miller and G. E. Lindamood,
"Structured programming : Top-down
approach, ® Datamation, Vol. 19, Neo,
12, Dec. 1973.

[2] E. J. Dijkstra, "Notes on structured
pro gramming,' Technische Hogeschool
Eindhoven, Report No. EWD-248, 70-
WSK-0349, April 1870.

[3) J. K. Hughes and J. 1I. Michton, A
structured approach to programming,
Prentice Hall, New Jersey, 1977,

[4) N. Wirth, "On the composition of
well-structured programs," Computing
Survey, Vol. &, No. 4, pp. 247-259,
Dec. 1874.

