THE COMPLETENESS OF A PROPOSITIONAL FRAGMENT OF
LESNTEWSKI'S ONTOLOGY AND ITS RELEVANCE

TO LOGICAL GRAMMAR

Arata ISHIMOTO and Mitsunori KOBAYASHI

§1 Introduction In Ishimoto (2] and subsequeantly in Kobayashi
and Ishimoto (5) it was proved that a propesitional fragment of
Lesniewski's ontology is embedded in first-order predicate logic
with equality via a translation. (See also Shimizu and Kagiwada
(12).) Now, in this paper a much simpler proof will be given of
this embedding theorem along with some philosophical as well as
linguistic observations. The embedding theorem will also be
employed for proving the elimination theorem and other ones for

the propecsed fragment which are usually proved syntactically.

§2 Tableau method As is the case with our previous work, we

first introduce following Schutte (9J) , (10), (11) the notion of

positive ‘and negative parts of a fromula, which has the effect of

simplifying the subseguent discussion though not indispensable.
Definition 2.7 The positive and nezative parts of a formula

A are defined recursively as follows:

2.117 A is a positive part of A,

2.12 If BVC is a positive part of A, then both B and C are
positive parts of A,

2.13 If ~B is a po.itive part of A, then B is a negative

part of A,



2.14 If ~B is a negative part of A, then B is a positive

part of A.

For making the notion clearer, we are presenting some examples:

F{A+) = A,

FA+]) =~~A,

F (A+)=~~(A v~B),

G (A-)=~ &,

G (A-) =~~~ AVB,

G (A-)=~~(~AVB)V C,

where F (A+ ) (G UA- J)) means that A occurs in F(A+J (G(A_J) as a
positive (negative) part thereof, The expressions like F (A4, B+ J,
G (A+, B., C_) and the like are understood analogously subject to the
condition that A, B and C be not overlapping.

As proposed by Ishimoto (2 ) the propositional fragment of
Lesniewski's ontology called L1 is defined in its Hilbert-type
version to be the smallest class of formulas containing all the

instances of tautology as well as the formulas of the following

froms:
2.27 F €ab>€aa,
2.22 | €abAehc. Deac,

2.23 } €ab aAepc. Deba,

being closed under detachment.
Lesniewski's (elementary) ontology is, on the other hand, defined

to be the smallest class of formulas containing all the formulas of the

form:
Feab=.(2x) €xa Nx)y)exansra.osxy) A (x) (€ xaDExb),
or F eab=.(3x)(exan=m) A(x)(y) (e xaneya.Daxy)

as well as all theses of first-order pradicate loiic (witauut

eyuality) being closed under quantificational rules.
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The tableau method proposed of L4 by Kobayashi and Ishimoto
(5) is defined by the following reduction rules:

G (AVB.)
\VA

. i
G (AVBIV~A G(AVB_)V~B,

G (€ab.]

G(eab. \f~€aa ,

G(€ab. , Ebc. ]
=)

G (€ab., Ebec. JV/~€ ac ,

G(€ab_ , €Ehbec.)
€3

G (€ab-, €be. )V~<ba ,

of which the first one is known to be sufficient for developing
classical prorositional logic.

The (well-formed) formulas or L; are deilned in the well-xnown
way in terms of a (countabiy) intirite 1list o waume variabies a, D,
¢, +.. and the like as well as ol two logical sSymools, namely, V
(disjwiction) ana ~ (negationjalong witn tue Lesulewssi's & (epsilon)
and some technical symbols. (Other logical symbols are defined, if
necessary in terms of tnem.) The formulas thus defined will be
denoted by such meta-logical variables as A, B, C,... (Outermost
parentheses will be suppressed almost in every case.) It is remarked
in this connection that all the symbols thus introduced will be
employed only meta-logically. (For Lesniewski's ontology consult,
among others, Slupecki (13 ), Lejewski (6] and Luschel (7313

Now, on the basis ot the reauction ruiess as aoove introduced, we
wish to prove some these of L1 by tne taoleau methoa. (The detailed
definition of tableau is not given here. For the formal definition

refer to Smullyan (14) .)



2.37 The proof of & ab>oe aa (2.21):

~cab v Eaa

(~=ab V&€ aa) V~E aa.

2.32 The proof of €abA& be. D€ ac (2.22):

~~( ~=ab V~&bc) VE ac
€,

(~~(~E abv~€bc) V Eac)V~€ac.
2.33 The proof of € abAE bc. DEba (2.23):

~~(~€ab V~Ebec) VE ba

(~~ (~€abVv~che) VE ba} V~Erba.

2.34 The proof of (~Saa\v/~cab) D~€&ab:

~ (~=aa V~=ab)V~E adb
A\

(1 (3
€1 —
(2) )

where

(1) = (~(~= aa V~€ ab) V~&ab) V~~& aa ,

~
n
~—
i

((~(~&aa V~=ab) V~Eab) V~~c aa) vV~ aa ,

—~

(oY}

N
1

= (~(~€ aaV~Sab) V~Zab) V ~~=ab ,
As exemplified above, a tableau, every branch of which ends with a
formula of the form F (A4, A_) , is said to be closed. A closed tableau

constitutes a proof of the given formula.

§3 Fundamental theorem For preseating the fundamental theorem

(Theorem 3.2), the notioa of Hintikka formula is in order, wnich runs
as follows:

Difinition 3.1 A Hintikka formula A is defined only as follows:

3.71 A is not of the form F(B+, B-J,
3.12 If A coatains BwC as a negative part, then it contains B or

C as a negative part thereof,



3.13 If A contains & ab as a negative part, then it contains

€aa as a negative part thereof,

3.14 If A contains & ab and € bc as negative parts, then it contains
€ ac as a negative part thereof,

3.15 If A contains € ab and € bc as negative parts, then it contains
€ba as a negative part thereof.

Now, we state the theorem:

Theorem 3.2 Given a formula of Lq, reducing it by way of reduction

rules, every branch of the tableau ends in a finite number of stevs

gives rise to a formula which is already in occurrence as its negative

part in the formula to be reduced. And, in case a branch ends with a

Hintikka formula, every constituent formula of the branch constitutes

a positive part of the Hintikka formula.

The proof is not given formally, and we shall rest content with
the presentation of an example, which, we hope, will be sufficient
for taking care of the general case.

Let the given formula be:

~(~ZaaVEba)V~Eac ,

with the different name variables a, b and ¢, which could pessibly
be comobined in the course of the reduction by way of €1, €2, and 6_5
only in the following ways giving rise to an atomic formula involving
the indicated variables in this order, namely,

(a,a), (a,b), (a,c), (b,a), (b,b), (b,c),

(c,a), (c,b), (c,c).

Now, by reduction the given formula we obtain the following

tableau:



~( ~= aa VE balV~€e&ac
(1) (3)
O —
(2) (aa) (4) (be)
63“
RECNCON
(6) (aa)

——

(7) (bv)

where

(1) = (~( ~€ aa VE ba)V~ €Eac ) V~~¢& aa,

(@)= ((~( ~€ aa V€& bgV~Eac) V~~= aa) V~caa,

(3)= (~( ~€ aaVE ba)V~€ ac) V~E ba,

(4) = ((~({ ~=aave ba\~=ac)V~&hba) V~& be,

(5)= (((~(~€aa VE balV~Eac)V~€Eba) V~Ebc)V~Eab,

(6)= ({(({~(~Saa VE balV~Sac)V/~€E ba) V~bc)

V~&ab) V~&aa,

(7) = (({(({~(~€ aaVeba)V~cac)V~Eba)V~hc)
V~Eab) V~caa) V~bb.

Each reduction by €4, €5, or & 3 uses, every time, one possible
combination of (orderd) pairs of name variables a, b and ¢ as indicated
on the left hand of each constituent formula of the tableau, and any
combination once used is never employed again, because this would
be against the restriction imposed upon the extension of a formula.
And, in the case of \/. any prin ipal formula of \/. used as such is
never emplcyed again in the same branch. If V. were applied to the
formula once used as its princiral formula, this application would
be against the regquirement of the Theorem. Since there are only
finite number of subformulas of the given formula and the combinaticn
of name variables, in this case, nine in total, the extension of a
branch come to the end in a finite number of steps even if we do not
come across a formula of the form F[ A,, A_J.

Once we come across a formula, which is not of the form F [A,, A-]
and to which no reduction rule is applicable any more without violating

the requirement of the Theorem, the formula already constitutes a

oz}



Hintikka formula. In fact, if the formula contained a formula of the
form AV B as a negative part without having neither A nor B as its
negative parts V. would remain to be applicable to the formula extending
the branch against the assumption. The other properties of the Hintikka
formula are dealt with similarly.

The second statement of the Theorem is proved by induction on the
length of the branch which ends with a Hintikka formula.

This completes the proof of Theorem 3.2.

A tableau constructed subject to the requirement of the Theorem
is called a normal tableau. The tableaux shown in §2 are all normal.

For reference we wish to present hereunder a tableau which is not normal:

~c
€, ab

~cab V~€ aa
€2

(~=ab V~=aa) V~Eab ,

where the application of €3 gives rise to € ab as a negative part,
which already occurs in the second line to be reduced.

As will be demonstrated in what follows, if a formula is provable
at all by the tableau method, it is proved by a normal tableau.

Y4 Translation and Soundness In preparation for the soundness

and completeness of L1, we wish to define a translation denoted by T:

Definition 4.1 The translation T, which transforms every formula
of Lq into that of first-order predicate logic with gguality, is
defined as follows:

L11 T €ab = Fp ¢xFx ,

b2 TAV B = TaVTB,

Lo13 T~A = ~Ta ,
where Fy, Fb,... are the monadic predicate variables of first-order
logic corresponding to the name variables a, b, ... of L1. Fp ¢ xFgx

is the Russellian-type definite description, namely,

751,,



Ix(Fax A Fp x) AYxV7(Fa xAFa y. Dx = y)-.

As easily seen the translation T is defined by induction on the
length of the formula of Lq. It is also not difficult to see that the
T-transforms of the formulas of L1 do not exhaust the formulas of

first-order logic.

Lemma 4.2 The formulas of the following forms are provable in

forst-order predicate logic with equality:

TF(a, =T FlAL) VA,
TG(A-) =T G(A-)v~A .

For proving the Lemma it suffices to demonstrate the following

two implications :

=TADTF(ALD ,

= T~A DODTG(A-] ,
which are proved simultaniously by induction on the number of the
procedures applied for specifying A as a positive (negative) part of
F(A+)(G(A-]).

The basis does not preseat any difficulties since TAD TA is a
tautology.

For taking care of induction steps, suppese FUA+ J= Fq(AVEL]) .
We, then, have T A VB DO T F1( AVvB+ )by induction hypothesis. This,
in conjunction with—T A D> . TAV T B (=T AVB), gives rise to =~
TADTFPF1( AV B+) as required. The case that F(A+ ) = F1 [Bva,]
is taken care of analogously.

We, next, supvose that F( A, ) = Gy(~A_ ) , from which obtains by
induction hypothesis '~ T~~A DT Gy (~A_J. Since+=T~~a=T A4,
we easily obtain —m T A DT Gy (~A- ) as required.

Finally, assume G ( A-) = Fq(~A+ ). By induction hypothesis

—T~A DT F1(~A+ ), wnich is nothing but the looked for ;— T~A

DT G(AL ).

1

[~



We are now in a position to prove the soundness of L1 with respect
to the proposed translation T.
Lemma 4.3 (Soundness theorem) If A is a theses of Lq in its tableau

method (not necessarily proved by a n_rmol tableau), then T A is provable

in first-order predicate logic with eguality.

The proof is carried out by induction on the length of the tableau
on the basis of the preceding lemma. (The proof proceeds upwards
beginning with the end of the branch.)

The basis is forthcoming from the following equivalences in first-

order logic.

= TF (A, A_)

1

TF (A, AL ) VA Lemma 4.2,

i

T(F (A, ALIVAIV~A Lemma 4.2,

M

T(F (AL, ALJVT A V~TA Definition 4.12, 4.13
We are proceeding to induction steps, which are taken care of
by the following eguivalences:
For V_ :
FTGg(AVB.)JV~aand —T G ( AV B.)V~3 induction hypothesis,
& F T (GLAVB. IV~ AV~ (AVB)

and =T (G(AV B_V~3)V~(AVBE) Lemma 4.2,

)

T GUAVB.)VW~(AVB) progositional logic,

3

T G({AVB_.) Lemma 4.2.
For €4

T G(€ab )V~ aa induction hypothesis,

& T (GLE ab_)v~=3a) V~=ab Lemma 4.2,
S F 1 GlEab)]V~T S aa)V~ T € ab Definition 4.12, 4.13,
S F TG{Eab )V~ Fg ¢ xFy x V~ Fp ¢ xFy x Definition 4.11,

)

F TGlEab )V~ Fy ( xF3 x predicate logic,



& BT G(€ab_ )V~TE€ab  Definition k.11,
& | T Gleab, )V~ ab € Definition %.12, 4.13,

& FTG[€ab. ) Lemma 4.2,

where in the equivalence of the fourth and fifth lines use is made
of the following theses of first-order predicate logic with equality.
— FpexFg x = ..Fq ¢ xXFax AFp(xFgx,

The cases corresponding to €, and €3 are similarly taken care of,
and we rest content with presenting the following equivalences in
first-order logic, which are employed in the proof.

F Fyp ¢xFa x A Fo ¢ xFp x. = . Fy ¢ xFaxAFg ¢ XFy xAF ¢xF5 x,

FFpexFy x A Fot xFp x. =. Fp ¢xFg x A Fe ¢ xFp x A F5 ¢ xFp x.-

§5. Completeness With a view to proving the completeness of Lq in
its tableau method version with respect to the translation T,
namely, the converse of the soundness theorem just proved, we first
prove in advance the following lemma.

Lemma 5.1 Every Hintikka formula contains at least one atomic

formula as its positive or nezative part.
ioriu.za as 1ts or 3 b

This is easily proved by reductio ad absurdum by supposing to

the contrary.

Assume, if possible, a formula of the form AV B wers the shortest
positive part of the given Hintikka formula. By Definition 2.12,
then, A and B would be both positive parts of the formula against
the hypothesis. Again, if possible, suppose AV B were the shortest
negative part of the formula. By Definition 3.12, then, A or B would
be a negative part of the formula against the hypothesis. If~ A
were the shortest positive part of the formula, A would be a negative
part thereof (2.13) against the hypothesis. If ~ A were a negative

part of the given formula, A would be a positive part thereof (2.14)



against the hypothesis.

We next introduce the notion of chains thus:

Definition 5.2 Given a Hintikka formula, a chain is a finite
series of name variables a1, a2,-.., 8y (1< n) such that:

5.217 a1, apy-.., ap are connected by the relation R(ai, aj) to
be defined as the occurrence of €a; aj and €aj a; (1<;,;<n) as
negative parts in the Hintikka formula,

5.22 The series aq, ag:--+3 3g is maximal.

As easily seen, the relation as above defined is reflexive,
symmetric and transitive. This obtains from the properties of the
Hintikka formula.

For the purpose of illustration a number of Hintikka formulas
will be presented along with the chains associated thereto:

5.31 ((~€abdv~ehc)V(~&acV~=ha)) V (~Zaa V~sb),
where the series consisting of a and b constitute a chain if ¢ is
different from a and b.

The following one, however, Joes not contain any chain:

5.32 (~ (~€ abvVvEaa) V~~&ab) V & ba,
where no name variables are connected by a chain.

5.33 ((~€abV (~= aa V~&ca))v~ecce) V~eac,
where the series consisting of a and ¢ is the only chain with b different
from a and c.

5.34% 1In the next example a formula is reduced by reduction
rules with one branch ending with a Hintikka formula. (All the name
variables involved are assumed to be different from each other.):

( ~aa~€bb)V ((~= abV~Edc)VE cb)

V-
q |
el__(__i__ 63_(3)_
(2) (&)
e —
<, ()

(6)



where

(1) = ~(~g aa vebb) y~c ab Yy~ dec VE ¢b V~~€caa ,

(2) = ~(~caaVveEbb) V~Eab V~E dc 'y Cb\/fm~zia V~caa ,
(3
(%)
(3

(6) = _(_caavebb) y~=ab y~c dc V& cb V~&bb vy~ & ba

~(—caavebb) Vv~ ab V~& dc VE cb V~Ebb

I

~(—caa vebb) y~cab Yy~ dc VE cb V~Ebb V~E ba ,

~(—caa vebb) V~cab V~& dc VE cb V~Ebb VYV~ & ba V~Eaa,

V~&€aa V~&dd .
what
(Here and in, follows the association of disjuncts will not be

indicated since it is easily recoverable.)

The end formula of the right branch of the above tableau is a
Hintikka formula, where the series consisting of a and b constitues a
chain, while d also happens to be another consisting of only one
name variable.

Before going to the construction of a model of first-order predicate
logic with equality, through wnich the T-transform of this Hintikka
formula (6) is falsified, it is remarked that the Hintikka formula
itself is falsified by a model for L1 in the following way.

With this in view, every atomic formula, which occurs in the
Hintikka formula as a positive (negative) part, is made false (true).
Such an atomic formula is certainly in existence by Lemma 5.1.

Thus,

5.41 €Ecb is made false,

5.42 eab, €dc, €bb, Eba, Saa and €dd are made true with
other atomic formulas assigned any truth value, say, falsity.

In terms of these truth value assignments, every positive
(negative) part (of the Hintikka formula) takes ths value false
(true) as easily proved by induction oxn the length of the positive

(negative) parts.



It is also observed on the basis of the properties of

Hintikka formulas that the model thus constructed with the countable
domain consisting of all the name variables constitutes a model for
Lq. For example, if &€ ab happens to be true in the model, it occur
as a negative part of the Hintikka formula. Then, by the property
of Hintikka formulas &€ aa also occurs there as such, and this makes
€ aa true in the model. Thus, every formula of the form 2.21 is
true in this model. The axioms of other forms are analogously

shown true in this model.

By induction on the length of the branch which ends with the
Hintikka formula, it is easily proved that all the coastitueat for-
mulas of the branch including the given formula are made false since
they respectively constitutes positive parts of the Hintikka formula.

In the proposed (countable) model every name variable is interpreted
by itself, although some of them, say, a and b might be identical in
the sense that €ap and €ba is true in the model. For example,
all the members of a chain are identical in this sense.

On the basis of the modelling as described above, we are proceeding
to construct a model for first-order predicate logic with eguality,
in which the T-transform of every positive (negative) part of the
Hintikka formula is false (true).

The right branch of the tableau 5.34, it is recalled, ends with
the Hintikka formula (6), which contalas two chains, one consisting
of a and b and the other of 4 only.

Now, we are assigning a set of natural number to the (monadic)
predicates corresponding to the members of these chains in the

following way :



To F, and F, we assign {0},

To Fq we assign {1},

To Fo, which is the predicate corresponding to a name variable
not belonging to any chain, but constituting a name variable with which
the second chain ends, we assign {1, 2}, where 2 is a number not used
so far for the assignment to the member of any chain. To the predicates
corresponding to all other name variables we are assigning P i.e.,
the empty set.

On the basis of such assignments we obtain a model M for first-order
predicate logic with equality such that M = <N, =, Fa, Fy, Fe, Fdoe-e)
where N is the set { o, 1, 2 }, = the ideatity relation between these
natural numbers, and Fa, Fy, Fo, Fg,... the sets of natural numbers
as above specified.

We wish to show that the T-transforms of positive (negative) parts
of the given Hintikka formula is false (true) in the model M.

With this in view the T-transforms of € aa is evaluated on the

basis of the model M and we have :

TSaa = Fg ¢ x¥3 x = J x(Fa xAFa x) A¥xVy(Fz xAFa y- Dx = y)
= .({o}oANo}ov({o}1a{o}nv({o}an{o}a).
A({o}on{o} o0.20=0)

A({o}on{o} 1.20=1
AC{o}on{o} 2.20=2)
AC{o}1A{c}0.21=0)
AC{o}in{o}1.01=1)

AC{o} iAo} 2.01=2)
AC{o}2a{0}0.22=0)

AC{o}2a2an{0} 1.02=1)
A({0}2n{0}2.02=2),

where all the conjuncis are true, and this makes the T-transform

of € aa true in the model M. The T-transforms of €ab, € bb and € ba

are analogously shown true in M.



The evaluation of T € dd proceeds as follows:
Tedd = F3¢xFg x = Ix(Fg x AFg x) AVXVYY(Fy xAFg ¥-Dx=y)-

=.A({1}oan{1}ov{1}a{1} v {1}2Al1}2).
Al{1}on{1}o>0=0)
AN{1}oAn{1}1D0=1)
A{t}sAn{1}220=2)
AN{1}1iA{1}o>o1=0)
AN{1YIA{1}1.o1=1)
AN{1}1A{1}2D01=2)
AN{1}a2An{1}o>o2=0)
AN{t}2A {1} 1o2=1)
AN{1}2A{1)}202=2)

which is obviously true in M.
TEdc is evaluated in M in the following way:
T€de = F, ¢ xFq x = Jx(Fg xA\Fe x) A¥vxyy(Fgx NFq y-2x =y)

= ({t}on{n2}o)v({1}in{n2})v({1}2A{1,2}2)

A({1}on{1}0.00 =10)
A({1}oA{1}1.020 = 1)
A{1}on{1}2.00 =2)
A{1}1A{1}0.21 =10)
A{1}rAa{1}1.01 = 1)
A{1}1Aa{1}2.01 =2)
A({1}2An{1}0.22 =0)
At{1}2Aa{1}1.02 = 1)
A{1}za{1}2>2 = 2),

which is true in M. We, next. evaluate in M the T-transform of
ecd, which is the only atomic formula occurring in the Hintikka

formula as a positive part thereof:
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TeEcb=FpxF, x = 3x(F, x AFp x)A vx vy(Fc xAF y.Dx= ¥)
=({t.2}onf{o}o)v({2}1A{o})v({n2}2A(a}2)
Al{1.2}oAn{1,2}0. D0 =0)

Al{1,2}an{1,2}1. D0 =1)

A({1,2}aen{1L2}2 D0 =2)

I

Al{1.2}1A{1n2}0. 21 =0)
A{1.2}1A{12}1 21 =1)
A{t,2}1A{12}2 D1 =2)
A{1.2}a2A{12}0 D2=10)
AC{1.2}a2An{12}1. D2=1)

AC{r.2}an{1,2}2. D2=2)

which is false in M.
Lastly, we wish to evaluate T € ef, where e and f are any name

variables not occurring in the given Hintikka formula (beiag not

necessarily different):

TE€ef = Ff txFe x = I x(Fe xAFf x)AV¥xyy(Fe x\Fe y. Dx=y)
= (pO0NAP0)IV(dTAPT)V (B2Nd2).

AN(d0 A0 D0 = 0)

AN(dO0Ag1 D0 = 1)

A(dO0AP2 DO 2)

I

N(g1 AP0 D1 =0)

Alg1 AP DA

I

AN(p1TANe2 D1 = 2)

A(d2Ap0 D2

]
o

N(Pp2APp1. D2 = 1)

AN(dp2A02 D2

i
N

which is false in M.
Thus, the T-transform of every atomic formula (of L1) has been
evaluated ian t2e model M, and every atomic positive (negative) part of

the given Hintikka



formula are evaluated false (true). By induction on the length of
positive (negative) parts of the Hintikka formula it is, then,
proved that the T-transform of every positive (negative) part of
Hintikka formula is evaluated false (true) in M. Since the given
formula constitutes a positive part of the Hintikka formula, its
T-transform is false in M. In other words, the given formula, which
is not proved by the tableau method for Lq is falsified by the model
M for first-order predicate logic with equality.

In this Hintikka formula, ¢, intuitively speaking, contains only
one atom, namely, d, but itself does not constitute an atom. In
otasr words, d is a unit set without being an atom. In Ishimoto 21,
(3] and Kobayashi and Ishimoto (5] , this singularity turned out to be
an obstacle for constructing a model for predicate logic, and it was
remedied by a ratier complicated device. But, here, the singularity
was overcome almost automatically.

In the above constructisn of the model, F; and Fy, were assigned

{O} y and Fq assigned {7}, willile Fc, wnich is not a member of any chain,

assigned {1,2

Nevertheless, we could assign to F; such sets (of intrgers) as
{1,2,3},{1,2,3,% } and the like with the domain of tie model consisting
of all the numbers involved. Such madels again falsify the T-trans-
form of the given Hintikka formula. Another model which is easily
envisaged would be that with the domain consisting of all the natural
number:, the predicates involved being properly defined.

We., next. wish to consiruct a model for the T-transform of 5.32, namely:

5.32 ~ (~Z ab V€aa)V~~= abVE ba,

which happens to be a Hintikka focrmula, but deces not contain any atoms.

Thus, there is not in existence any chain in this Hintikka formula.
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As in the preceding example, every predicate corresponding to a name
variable of Lq, whether it occur in the Hintikka formula or not, is given
the value ¢, i.e., the empty set (of natural mumbers). Nevertheless,
the domain of the model for first-order predicate logic is defined to
consit of any non empty set of natural numbers, and it is easily seen
that T 5.32 is falsified alike in any of these models (for first-order
predicate logic with equality).

In Ishimoto (2),(3) and Kobayashi and Ishimoto (5) we had some
difficulties in taking care of such a singularity, namely, the absence
of atoms. 3ul, here, this kind of singularity is again solved almost
automatically.

We are, now, in a position to generalize the model construction
thus far exemplified.

With this in view a formal procedure will be described for coastructing
a model for first-order predicate logic with equality in which the
T-transform of the given Hintikka foraula is falsified.

Let us assume that the given Hintikka formula contains n chains
(0 < n) as defined in Definition5.2:

ay s A g e-ey Ay (1< ¢y,
54173 b5, , b, , «e.y, b_ (1< m), n

m

c 1c21 eeey Ch (1Sh)y

to which are aszociated the following atomic formulas occurring in the
Hintikka formula as negative parts:

5.411 ea, aj, €b; b;. €3
wasres a; and aj, b, and bj, ¢ ,;and ¢j... ars respectively ranging over chains
{31 - ae }, { by by s «nn an}’ {c1 y Cp 4 eees ch} y ees

There could be name variadbl:s with which a chain ends without being

a member of a chain. Suct name variables called tails will be designated as:



S5.42 dq, dg 4 ... 5 dp (0 <),
where, it is remarked, some chains migh® not have such a name variable,
i.e., a tail. The atomic formulas, which occur in the Hintikka formula
as negaive parts involving these name variables, are:
( €a,;d;, €Ea; d;,... » Eapd, ,
eb,d;, €by, d;,... , ebd, ,

Ecxdx’ €z, dx"" , echd1 ,

5.4211 o
€a;dy, €2z day+-- 3 €2 d2 ,

€b, dy, €by dgyeer 5, by dy,

l_ €cy, dy, €cy dyyeee s €cpdy,

of which some could be not present.

With this, we conclude the listing up of all the atomic formulas
occurring in the Hintikka formula as negative parts. In view of the
properties of the Hintikka formual the listing up is exhaustive.

The atomic formulas, which occur in the Hintikka formula as positive
parts, are as follows:

» €a; b; (1=Kl 1 << m),

Sa; c; (1<i<e, 1<j<h),

.. ]
€b;a; (1<i<m, 1<j<8),
5.51 T €b;, ¢, (M<i<m, 1<j<h),

ec; a. (M<i<h, 1<jige),

ez, b, (T<i<h, 1<jgm),

L
L :

i.e., every atomic formula listed above is mad= up of two name
variables (along with € ) taken from differeat chains.

€a; dj (1§i§€a1£j§.k)a
5.52 eb; dj O<icm 1< <k ),
ec; d; O<ich T<j<k ),

. e Py



where d; (1<i<k ) is a name variable not associated with a; s b
Ciyens

5.53 €a; e, Ebj e, ... (lgic<e, 1§j§m, eee),
where a; bj, «++ are the members of chains, but e is any name
variable which is neither a member of a chain nor a tail.

5.5k €4; £ (1<igk),
where d; is a tail and f is any name variable occurring in the
Hintikka formula.

5.55 €ef,
where e constitutes neither a member of a chain nor a tail, while
f is any name variabls occurring in the Hintikka formula.

5.56 egf,
where g and f are the name variables ranging over the countablly
infinite collection of names variable not occurring in the Hintikka
formula.

Now, the assignments of values to the predicate corresponding
to the name variablzs as above listed proceeds in the following
way:

To each Fax ; Fag"“’ Faf is assigned {0},
To each Fb1 v Fp,veees anlis assigned {1},

To each F¢, » Feyrevvy Fop is assigned {2},

In other words, to each predicate associated with a member
of a chain is assigned { n} , the unit set consisting of the
natural number n (preferably, beginning witnh 0O), with predicates
corresponding to the members of diffsrent chains assigned different
unit set. Thus, if there are five cnins. {0}, {1}, {2}, {3}

and {4} will be the unit sets assigned to the predicates associated
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with the respective members of the five different chains.

To the predicates corresponding to the tails dq, d2, ... , dp
say, d; , we are assigning a finite set consisting of numbers corres-
ponding to the predicates Faj with a; being a member of a chain which
ends with d; along with another number not used as such. Thus, if a,
b, and ¢ are members of different chains all ending with d; and F, ,
Fp and F; are, respectively, assigned {2} , {4} and {5}, then
Fy; is interpreted as { 2,4,5, £} with k different from any numbers
used for the predicates corresponding to the members of a ch

There still remain a number of name variables, to the predicate
logic correspondents of which have not been assigned any set (of
natural numbers).

For this purpose, we wish to propose a very simple assignments.
Namely, ¢ , i.e., the emply sat (of natural numbers) is assigned
to the predicate logic counterpart of any of these name variables.

On the basis of these assignments, a model M = < N ’=’E&.vfb yeeo
is constructed in the following way:

5.61 N is 2 finite set of the natural numbers introduced
so far in the proces of assignments,

5.62 F; , Fp ,... are the sets (of natural numbers) assigned to the
predicate logic counterparts of the name variables ( of L, ) as
described above.

5.63 = is the identity relation between natural numbers.

In the mcdel M all the positive (negative) parts of the given
Hintikka formula ares made false (true).

With this in view it is noticed in the first place that the
predicate logic counterparts of the atomic formulas beloaging to

5.411 are all true, since
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F, ¢ xF, x = {n}ex{n} x
= (2x) ( {n} xA {n} x) AVxY y( {n} xA{n} y.ox=¥),

is true in M with a being a member of a chain.

The predicate logic counterparts of the atomic formulas coming
under 5.4271 are also proved true, since

FyexF, x = {o,1, ..., % }ex{n} x
= (3x) ({0,1,..4,&) xA{n}x) AV xvy( {n}xA{n}y- DX =¥)

is true in M with 4 being a tail and a a member of a chain which eads
with d. This is because n is a member of {0,1,..., %} with n different
from % .

The predicate logic counterparts of the formulas belonging to
5.51 are proved false in M, since in this case the unit set corresponding
to the members of different chains are 21l differeat as stipulated above.

The predicate logic correlates correspoading to the formulas listed’
in 5.52 are again falsified in M. In fact, Fg; and Fdj are disjoint,
since the chain { ap 4 8p 4---5 3y } does not end with d; .

The predicate logic counterparts of the atomic formulas falling
under 5.53 ~ 5.56 are easily proved false in M. More srecifically,
the predicate logic correlates of 5.53 are of the form b ¢ xFg; X
which is false in M in view of the definition of definite descriptioas.

Analogously, the corresgondents of 5.355 and S.55 are sanown false,
although the latiter, wnich does not take place in the Hintikka formula,
has nothing to do with thne evaluation of the Hintikkz formula.

On th2 other hand, the formulas of the foram Ff ‘Kngx correlated
to 5.54% are also false, since Fd; is not a unit set.

02 the basis of the truth values thus assigned, it is shown that the
predicate logic counterparcts of the positive (negative) parts of the given
Hintikka formula is false (tru2)in M. Since the given formula constitutes

a positive part of the Hintikka formula as stated in Theorem 3.2,
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the T-tranziorm 57 the givern formmla comes to be falss in M.
Tnis concludes the proof of the completeness of L4, which is

stated as:

Lemma 5.7 If TA is a thesis of first-order predicate logic with

equality, then A is provable in Lq in its tableau method version-

It is remarked in passing that use is made of the soundness
result of predicate logic in passing from semantics to syntax.

Combining the soundness and completeness results (Lemma 4.3 and
Lemmz 5.7), we have:

Theoream 5.8 A is a thesis of L1 in ifs tableau method version

iff TA is provable in first-order predicate logic with equality.

It is not difficult to see that a predicate logic model constructed
before for falsifying thae T;transform of the given Hintikka formula was
defined following the geaneral setting here described.

As mantioned earlier, this was the resilt obtained by Ishimoto
(2), (3) and Kobayashi and Ishimoto (S] , the proofs of which were,
however, more complicated.

Theorea 5.9 (Cut elimination thecrem) If BV A and ~ AV C are

provable in L1

4

n its tableau methcd wersion, then BV C is z2lso a

thesis thereof. (Here B or C ¢nuld bs the emptv evoression.)

By Lemma 4.3.(soundness theorem), T3V TA and ~ TA V IC are
provavle in first-order predicate logic with eguality. From this
follows taz thesishood of T3 V TC, namely, T B V C in predicate
lozic. 1In view of Lemma 5.7 (Completeness theorem) B vV C is provable
in Lq in its tablezu method. (Tae cut elimination theorem for Lq was
also proved by Mr. N. Kanai syntactically)

From the ccmrleteness theorem (Theorem 5.7) and the coastruction
of a Hintikka formula for a formula (of Lq) not provable there, it

fellaws thzt for every formula (of Lq), if it is provadle at all,
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it is proved by a nomal tableau. Suppose, if possible, there were
such a formula. Then, by reducing it following the procedure as
described in Tneorem 3.2 (Fundamental theorem) there would obtain a
Hintikka formula, on the basis of which we could falsify the
T-transform of the formula against the soundness theorem (Theorem 4.3).
This is also the result announced earlier.

On the basis of the cut elimination theorem, we can prove that
any thesis of Lq in its Hilbert-type version is provable in Lq in
its tableau me2thod version. Conversely, any formula of L1 in 3i§s
tableau method version constitutes a thesis of L4 in its Hilbert-
type version. This is proved by the length of tableaux.

Theore:m 5.10 (Separation theorem) If a guantifier-free formula

A is provable in L, i.e., Lesniewski's (elementary) ontolozy, A is

already a thesis of L1

If such an A is not provable in L4, by Completeness theorem,

a predicate logic model could be constructed falsifying its T-trans-
form. On the basis of the model we could obtain a model for L
wnicnh falsifies A. (Details ar: omitted.)

Before concluding this section we wish to remarik that the coastruc-
tion of a predicate logic msdel is by no means unigque. For example,
the domain N of the model could be the infirite set of natural
numbers, and to the tail we could assign any set (finite or infinite)
wnich contains at least all the members of unit sets assigned to
predicate logic counterpart of the members of a chain which ends

with tae tail.
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6 Grammar We are going to take up in this section the relevancy
to grammar or grammatical theory of our L4, which has hitherto been
developed only as a logical theory.

With this in view a number of lexicons of a fragmsat of a
natural language, say English are identified with their counterparts
of Lesniewski's higher-order ontology. The propcsed identifications
proceeds in the following way:

the

1x 2y €xy

a Ax 2y (Jz) (ezx Aezy),

(an, some)

is (copula)

A'P IxP (Ay x =7),

or = AP Ayp (Ax x=7y),
and = 2% 2'a {pAq),

or = Ap 2'q(pVaq),
not = A'p ~p,

Socrates = l'y € Socrates v,
Bill = 1y eBill y,

Mary = Xy € Mary vy,

marn = man

boy = boy

Here, 1 x...X..., intuitively, stands for the collectizn
(or set) of atoms or atomic names x's such that ... X ..., while

' .. x ... and the like represents the collection of x's

satisfying ... x «.. A X ... X ..., it is emphasized, is always assumed

to regresents a name, while Ad'x ... x ... and the like do not necessarily

stand for a name. 1In particular, 1'9 voo P ... is, if interpretead,
a collection of P's such that ... P ... with P ranging over the
denotations of noun phrases, in our case, those corresgonding to
the exvressions of the form d'y €a yor 'y (3z) (€za Aszy),

where a is constant name, not necessarily, atomic. (Our readenrine of
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copula is after Montaque (8).) a = b, on the other hand, is an
abbreviation of & ab AE ba.

The presence of such variables as P and those ranging over
propositions makes our logical system into Lesniewski's higher-
order ontology with A -conversion as a rule. And, the derivations
in the seguel will take place in this higher-oder ontology.

The status of 1 x ...x... as a nzme is characterized by axioms
of the form:

6.1 €a lx ... x ... =, ... 8 ... \Eaa,
which is adjoined to L or Lesniewski's higher-order ontology as
additional axioms. In fact, the expression€a 4 x ... X ... is
meaningful only if dx .. x ... is of the category of names, and the
namehood of 4 x ... X ... is guaranteed by this axiom.

Tt is remarked in passing that proper names such 'Scorztes!
and 'Bill' are thought of as 'the Socrates', 'the Bill' and the like
as seen from the above identifications. It is noted that we are
following Cresswell (1) in identifying the expressions of natural
language with those taken from a logical system ualike the case of
PTQ, i.e., Montague (8), where the formasr are translstad into their
logical correlates.

Now, ther2 are all in all engnt possible constituent aralyses
for the simple sentences of the form:

Det + Noun + Copula + Det + Noun,
if Det is ranging over 'the' and 'a' as avove identified.

Namely, we have:



6.21 ((the Noun)(Copula (the Noun))),

6.22 (((the Noun) Copula)(the Noun)),
6.31 ((the Noun)(Copula (a Noun))),
6.32 (((the Noun) Copula)(a Noun)),
6.41 (( a Noun)(Copula (the Noun))),
6.42 (((a Noun) Copula)(the Noun)),
6.51 ((a Noun)(Copula (a Noun))),
6.52 ({(a Noun) Copula)(a Noun)).

Hereby, Nouns are assumed synonimous with mames in the sense of L1
with the same category. Although the above list exhausts all the possible
constituent analyses from the logical point of view, it remains a problem
whether a simple sentence {(of natural language) having the above forms
is susceptible of one of these analyses from the linguistic point of
view.
in a positicn to present a number of sample senteonces
(taken from English) and transform them within Lesnewski's higher-order
ontology. Each of these sentences coreesgends to one of the constituent
analyses 6.21--6.52 as described above.

6.561 (Bill (is Jonn))

=(( A'y €811l y)

(CA Ax2(dy x =y)) ( 'y & Joan ¥)))

Gy €3111 y) (Ax ((A'y EJoan y) (Ay x = y))))

= 'y €311y} (Ax=Joan (dy x = y)))

il

(C 'y e3ill y) (1x x = John))

fl

=35111 (4% x = Jonn)

il

3ill = Jonn

M

- € Bill Joun A€ Jonn Bili,
whers operators are allowed to operate not only from left to right,

but also from rignt to left. This was alredy practiced in Grass-

well (7).



6.62 |- ((Bill is) John)
=((( 'y €Billy) (2'P Ay P (Axx=7y))) (2y € John y))
=2y (( 2' z €Bill 2) (2x x =y))) 1'y €John y))
=((Ay€Bill (Axx = y)) ( Ay €& John y))
= (2y Bill =y) (1Y eJohn y))

= &John ( 1y Bill = y)

i

Bill = John

=.€3Bill John AE John Bill.

6.63F (Bill (is (a man)))

=(( 'y €Billy)
(C 1'P AxP(lyx

¥ 1y(F 2z E 2k AE 2y)) man)))

i

(( 'y €Bill y)
(C 2P AxP(2y x

vy 1'y( Fz)(ez man Asz2y))))

I

((21'y €3il1 y)

(2xC I'y(zz)(ezmanAszy))(Ay x = ¥))))
S 'y €Bill ¥y Ax( Fz)( €z manAE€z (1y z = y))))
=((1'y €Bill y)(1x(3F2)(&€z man A X = 2)))
=(( 'y €Bi11 yv)(1 x € x man))

=3i11 (1 x<x man)

= €3ill man.

Hereby, use is made of a lemma:
Eab =(5x) (€xb Aa = x),
which is easily proved in L. This and similar ones will be employed
in what follows without mentionfns them.
6.64 | ((Bill is) (a man))
= ((Cay €211 2P AyP(dx x = ¥)))
(Cax A1'y(zm 2)( € zxA&zy) man))

(Cay((C Ay €2111 ilxx =y
( 'y(zz)(= 2 man AE z;

= ((1ysBill (lxx=3)) (1'yi==)

~3
S+



=y Bill =y) (1y (Fz) (ez man AEzy)))
= (3z) (ez man Az ( 1y Bill = y))
= (3z) (e z man A Bill = z)

= €3ill man.

6.65 |-((a man) (is Bill))

=(((a% A'y (3 2) (€EzxAE zy)) man)
(C 1p 2z2( 2y x=y)) (2'y €Billy)))
=(( 2y (=2) (€ z man A E32Y))
(2x(C pry €Bill y) (Ayx=y))))
=(( I'y(z7z) (€2 man A€ zy)) (Ax €Bill (1y x = y)))
=(( 1'y(52) (€2 man Aezy)) (Ax x = Bill))
= (g3z) (€2 man A€ z (1 x x = Bill))
=(=z2z) (ezman A z = Bill)

= €Bill man.

6.66 - ({(a man) is) Bill)

= (((Cax Ay (=2) (e zx A€2y)) man)

(2P 2yP Qxx=1y))) ( 1y €Bill ¥))
((C 'y (=z2) (€z manAE zy))

(1P Ayp (Ax x=y))) (1y €Bill y))
((17(C 1'w(=2)(ez manAezw) (1x x=y)) ( 2y €3ill y))
((Ay(zz)(ezmanAcz (A xx =y))) ( 1y €Bill )
((ay(=z)(szmanAz=y) (1Y) €Billy)

il

([

(( ly € y man) (/l'y e Bill y))
€38ill (1y €y man)

= &31ill man.

6.67 = ((a man) (is (a student)))
= ((Cayx Ay (2z)(szx ASzy)) man)
(C2PAxP Ay x =y ax ayisziis zxAS zy)) studeant))))
(C 1'y(s2) (=2 man AE2y))
(Cap 2xp(ay x = y( 1'y{=2)(Ez studentAS zy))))

= (Cay (s 2z)(=z man Aeszy))
(1x(C 2ylz2)(ez student A= zy)) (A y x = ¥))))

((1'y(zziez man A € zy))
(1x(z2)(=z studenat Asz (1y x =y))))



(C A2y (2z) (€z manAezy)) ( 1x(Fz)(€ z student AX = 2)))

([l

(Cay (z2) (€z man Aezy)) (2x(ex student))
= (32) (ez manacsz ( 1 xex student))

il

(=2) (€2 man A=z student).

6.68 I-(((a man) is) (a student))

= (((Cax Ay (=z2) (ezx A€z2y)) man)
(2'PAyP(Ax x = ) 1'x2y(F 2)(€ zx A€2zy)) student))

1l

((C1'y(=2) (€ z manAeszy))
(2'PAyP(2x x =y))) ( 1'y(=Zz)(€z studentaezy)))

Ay i'y(mz)(ezmnAacszy))(lx x = ¥)))
( 1'y(=2)(=z student A€ 2zy)))
= ((ly(=z)ezmnaesz (1xx=y)))
( 2'y( Jz)(=z student AE zy)))
= ((ly(=mz)(ezman Az = ¥))
( 1'y(3 2)(e z student AEzy)))
= (lyey man)( 'y(z z)(ez student A& zy)))

i

(zz)(e z studeatAes z (Al yEy man))

(zmz)(e 2z student A€ z man)).

On the basis of these derivations we have

Theorem 6.7 F 6.61 £.62,
F 6.63 6.54 = 6.65 = 6.66,
b 6.67 = 6.68.

il

The eguivalence of 6.53, 6.64 and £.65 might be rather surcrising
in,view of their rather diverse constituent analyses. However, this heclds
good at least, from the logical voint of view,not from the linguistic
point of view perhaps. It is alsoc observed that excerting 5.57 and
6.638 all these sentences are eventually transformed intc sentences
belonging to L1, namely, to those quntifier-free sentences of L. Amcng
them £.57 and 5.62 are, howevsr, not reduced to a simple or atomic sentence

of Lq although they are for certain the sentences of L.



Lastly, it is observed that the T-transforms of these sample
sentences are exactly the same as their translations in the sense of

Montague (8] if we disregard intension.

§7 Conclusion There are two main results obtained in this paper.

In the first place, it was shown that a fragment of English, a very tiny
fragment though,could be accommodated to L1, namely, the propositional
fragment of Lesniewski's ontology. More specifically, it was found that such
sentences as 'Bill is a man' and 'a man is Bill' are reduced to an atomic
formula of Lq. Further the T-transforams of these sentences were found to be
the translations in the sense of Moatague (8).

Secondly, it was shown that the model for the sentences of Lq is not
uniquely determined. As has been repeated many times, there are an infinite
numter of models for the sentances of Lq along with more diverss models for
the T-transforms of these sentences of Lq. As a result, the notion of uniquely
determined model or semantics for natural lancuage does nct make sense, and
we are urgently resguested tc setile the matter if we wish to put the logical
grammar upon more secure foundations. One of the rescues, which inmediately
comes up to mind, would be to prorose a canonical model for naturzal language as
has been successfully provosed in a variety of mathematical studies.

In view of the failure of unisuely determining the model of natural
language, we are reguested to scrutinicze the status of individuals in the
model more carefully. For example, any noun, say, 'man' is represented by a
varisty of the sets of natural numcers, by nc means, uniguely determined.

By this, perhars, we could exrlain the shadowy status of individuals.

In other words, individuals are called for only to supgort nouns and
other lexicons involwved uron the warli of anonymous individuals,
and these individuals never ccme up to the surfice. From this also follows

the benefit to 2mploy Lesnizwski's ontology in place of traditional



predicate logic, and there no privileged status is reserved for individuals.
Further, it would be interesting to exploTe how far we could proceed in

the logic of natural language confining ourselves to propositional logic

like Lq.
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